遗传 ›› 2011, Vol. 33 ›› Issue (10): 1102-1112.doi: 10.3724/SP.J.1005.2011.01102
梁泉峰1,2, 王倩2, 祁庆生1,2
收稿日期:
2011-04-24
修回日期:
2011-06-30
出版日期:
2011-10-20
发布日期:
2011-10-25
通讯作者:
祁庆生
E-mail:qiqingsheng@sdu.edu.cn
基金资助:
国家自然科学基金项目(编号:30870022)和国家重点基础研究发展规划(973计划)项目(编号:2011CB707405)资助
LIANG Quan-Feng1,2, WANG Qian2, QI Qing-Sheng1,2
Received:
2011-04-24
Revised:
2011-06-30
Online:
2011-10-20
Published:
2011-10-25
摘要: 作为一门新兴学科的合成生物学已经展现出巨大的科学价值和应用前景。近年来已经发表了多篇综述文章, 从不同角度对合成生物学进行了总结和论述。文章首次对合成生物学和微生物遗传学之间的关系进行了阐述, 同时介绍了合成生物学在微生物遗传物质的重构方面最近的研究进展, 包括微生物遗传物质的合成、设计和精简, 遗传元件的标准化和遗传线路的模块化。也探讨了合成生物学与微生物遗传工程的关系。
梁泉峰,王倩,祁庆生. 合成生物学与微生物遗传物质的重构[J]. 遗传, 2011, 33(10): 1102-1112.
LIANG Quan-Feng, WANG Qian, QI Qiang-Sheng. Synthetic biology and rearrangements of microbial genetic material[J]. HEREDITAS, 2011, 33(10): 1102-1112.
[1] 闫桂琴, 郜刚. 遗传学. 北京: 科学出版社, 2010.[2] Drubin DA, Way JC, Silver PA. Designing biological systems. Gene Dev, 2007, 21(3): 242-254.[3] 赵国屏. 合成生物学: 从科学内涵到工程实践——访中国科学院院士赵国屏. 生物产业技术, 2010, (5): 87-89.[4] Gibbs WW. Synthetic life. Sci Am, 2004, 290(5): 74-81.[5] Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA, Smith HO, Venter JC. Genome transplantation in bacteria: changing one species to another. Science, 2007, 317(5838): 632-638.[6] Ball P. Designs for life. Nature, 2007, 448(7149): 32-33.[7] Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA III, Smith HO, Venter JC. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52-56.[8] Wimmer E, Mueller S, Tumpey TM, Taubenberger JK. Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat Biotechnol, 2009, 27(12): 1163-1172.[9] May M. Engineering a new business. Nat Biotechnol, 2009, 27(12): 1112-1120.[10] Mueller S, Coleman JR, Wimmer E. Putting synthesis into biology: A viral view of genetic engineering through De Novo gene and genome synthesis. Chem Biol, 2009, 16(3): 337-347.[11] Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA III, Smith HO. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 2008, 319(5867): 1215-1220.[12] Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA III. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA, 2008, 105(51): 20404-20409.[13] Shao ZY, Zhao H, Zhao HM. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res, 2009, 37(2): e16.[14] Tian JD, Gong H, Sheng NJ, Zhou XC, Gulari E, Gao XL, Church G. Accurate multiplex gene synthesis from programmable DNA microchips. Nature, 2004, 432(7020): 1050-1054.[15] Matzas M, Stähler PF, Kefer N, Siebelt N, Boisguerin V, Leonard JT, Keller A, Stähler CF, Häberle P, Gharizadeh B, Babrzadeh F, Church GM. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high- throughput pyrosequencing. Nat Biotechnol, 2010, 28(12): 1291-1294.[16] Kosuri S, Eroshenko N, LeProust EM, Super M, Way J, Li JB, Church GM. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol, 2010, 28(12): 1295-1299.[17] Benner SA. Unite efforts and conquer mysteries of artificial genetics. Science, 2000, 290(5496): 1506.[18] Wang LR, Chen S, Xu TG, Taghizadeh K, Wishnok JS, Zhou XF, You DL, Deng ZX, Dedon PC. Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol, 2007, 3(11): 709-710.[19] Shaw BR, Dobrikov M, Wang X, Wan J, He KZ, Lin JL, Li P, Rait V, Sergueeva ZA, Sergueev D. Reading, writing, and modulating genetic information with boranophosphate mimics of nucleotides, DNA, and RNA. Ann N Y Acad Sci, 2003, 1002: 12-29.[20] Renders M, Lievrouw R, Krecmerová M, Holý A, Herdewijn P. Enzymatic polymerization of phosphonate nucleosides. Chem Biol Chem, 2008, 9(17): 2883-2888.[21] Benner SA. Understanding nucleic acids using synthetic chemistry. Acc Chem Res, 2004, 37(10): 784-797.[22] Yang ZY, Hutter D, Sheng PP, Sismour AM, Benner SA. Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res, 2006, 34(21): 6095-6101.[23] Channon K, Bromley EHC, Woolfson DN. Synthetic biology through biomolecular design and engineering. Curr Opin Struc Biol, 2008, 18(4): 491-498.[24] Pósfai G, Plunkett G III, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044-1046.[25] Itaya M, Tsuge K, Koizumi M, Fujita K. Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA, 2005, 102(44): 15971-15976.[26] Chan LY, Kosuri S, Endy D. Refactoring bacteriophage T7. Mol Syst Biol, 2005, 1(1): 2005.0018.[27] Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644-646.[28] Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu GG, Forest CR, Church GM. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894-898.[29] Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA III, Smith HO, Venter JC. Essential genes of a minimal bacterium. Proc Natl Acad Sci USA, 2006, 103(2): 425-430.[30] Kang Z, Geng YP, Xia YZ, Kang JH, Qi QS. Engineering Escherichia coli for an efficient aerobic fermentation platform. J Biotechnol, 2009, 144(1): 58-63.[31] Liu Q, Luo G, Zhou XR, Chen GQ. Biosynthesis of poly (3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by boxidation pathway inhibited Pseudomonas putida. Metab Eng, 2011, 13(1): 11-17.[32] Lee SJ, Song H, Lee SY. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol, 2006, 72(3): 1939-1948.[33] Gao H, Zhuo Y, Ashforth E, Zhang LX. Engineering of a genome-reduced host: practical application of synthetic biology in the overproduction of desired secondary metabolites. Protein Cell, 2010, 1(7): 621-626.[34] Mizoguchi H, Mori H, Fujio T. Escherichia coli minimum genome factory. Biotechnol Appl Biochem, 2007, 46(Pt 3): 157-167.[35] Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato J. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol, 2005, 55(1): 137-149.[36] Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu SG, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res, 2008, 15(2): 73-81.[37] Murakami K, Tao E, Ito Y, Sugiyama M, Kaneko Y, Harashima S, Sumiya T, Nakamura A, Nishizawa M. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol, 2007, 75(3): 589-597.[38] Komatsu M, Uchiyama T, ōmura S, Cane DE, Ikeda H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA, 2010, 107(6): 2646-2651.[39] Calvert J. Synthetic biology: constructing nature? Sociol Rev, 2010, 58(S1): 95-112.[40] Nevoigt E, Fischer C, Mucha O, Matthaäus F, Stahl U, Stephanopoulos G. Engineering promoter regulation. Biotechnol Bioeng, 2007, 96(3): 550-558.[41] Jensen PR, Hammer K. Artificial promoters for metabolic optimization. Biotechnol Bioeng, 1998, 58(2-3): 191-195.[42] Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA, 2005, 102(36): 12678-12683.[43] Alper H, Stephanopoulos G. Global transcription machinery engineering: A new approach for improving cellular phenotype. Metab Eng, 2007, 9(3): 258-267.[44] Jensen PR, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol, 1998, 64(1): 82-87.[45] Davis JH, Rubin AJ, Sauer RT. Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res, 2011, 39(3): 1131-1141.[46] Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell, 2003, 113(5): 577-586.[47] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822.[48] Stoltenburg R, Reinemann C, Strehlitz B. SELEX-a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng, 2007, 24(4): 381-403.[49] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510.[50] Bauer G, Suess B. Engineered riboswitches as novel tools in molecular biology. J Biotechnol, 2006, 124(1): 4-11.[51] Werstuck G, Green MR. Controlling gene expression in living cells through small molecule-RNA interactions. Science, 1998, 282(5387): 296-298.[52] Bayer TS, Smolke CD. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol, 2005, 23(3): 337-343.[53] Pfleger BF, Pitera DJ, Smolke CD, Keasling JD. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol, 2006, 24(8): 1027-1032.[54] Farmer WR, Liao JC. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol, 2000, 18(5): 533-537.[55] Bhalerao KD. Synthetic gene networks: the next wave in biotechnology? Trends Biotechnol, 2009, 27(6): 368-374.[56] Purnick PEM, Weiss R. The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol, 2009, 10(6): 410-422.[57] Leloup JC, Goldbeter A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J Biol Rhythms, 1998, 13(1): 70-87.[58] Hasty J, McMillen D, Collins JJ. Engineered gene circuits. Nature, 2002, 420(6912): 224-230.[59] Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339-342.[60] Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403(6767): 335-338.[61] Fung E, Wong WW, Suen JK, Bulter T, Lee SG, Liao JC. A synthetic gene-metabolic oscillator. Nature, 2005, 435 (7038): 118-122.[62] Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456(7221): 516-519.[63] Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA. Synthetic biology: engineering Escherichia coli to see light. Nature, 2005, 438(7067): 441-442.[64] Lu TK, Khalil AS, Collins JJ. Next-generation synthetic gene networks. Nat Biotechnol, 2009, 27(12): 1139-1150.[65] Ça?atay T, Turcotte M, Elowitz MB, Garcia-Ojalvo J, Süel GM. Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell, 2009, 139(3): 512-522.[66] Keasling JD. Synthetic biology for synthetic chemistry. ACS Chem Biol, 2008, 3(1): 64-76.[67] 王俊姝, 祁庆生. 合成生物学与代谢工程. 生物工程学报, 2009, 25(9): 1296-1302.[68] 张柳燕, 王晶. 合成生物学研究进展与应用. 生物产业技术, 2010, (5): 54-60.[69] Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21(7): 796-802.[70] Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.[71] Kang Z, Gao CJ, Wang Q, Liu HM, Qi QS. A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol, 2010, 101(19): 7675-7678.[72] Streips UN, Yasbin RE. Modern microbial genetics. New York: Wiley-Liss Inc, 2002.[73] Danino T, Mondragón-Palomino O, Tsimring L, Hasty J. A synchronized quorum of genetic clocks. Nature, 2010, 463(7279): 326-330.[74] Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L. A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol, 2008, 4: 187.[75] Kwok R. Five hard truths for synthetic biology. Nature, 2010, 463(7279): 288-290. |
[1] | 刘永鑫,秦媛,郭晓璇,白洋. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845-862. |
[2] | 王博,刘芳,张二春,沃晨亮,陈振家,钱璞毅,卢浩荣,曾文君,陈泰,危金普,万仟,王韧,徐讯. 国家基因库:共有、共为、共享[J]. 遗传, 2019, 41(8): 761-772. |
[3] | 何祥鹏,邹秉杰,齐谢敏,陈杉,陆妍,黄青,周国华. 基于核酸等温扩增的病原微生物微流控检测技术[J]. 遗传, 2019, 41(7): 611-624. |
[4] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[5] | 邢万金. 乳糖操纵子模型的建立与教学中若干问题的解析[J]. 遗传, 2019, 41(6): 548-563. |
[6] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[7] | 吴燕华, 范慧慧, 钱榕, 曾勇, 姚瑶, 林娟, 卢大儒, 丁妍, 乔守怡. 一致性建构原则下遗传学混合式教学设计与实践[J]. 遗传, 2019, 41(5): 439-446. |
[8] | 孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[9] | 吴凯,罗朝晖. 昆虫学案例在遗传学教学中的应用[J]. 遗传, 2019, 41(4): 349-358. |
[10] | 周萌,景军红,毛瑞涵,郭静,王志鹏. 代谢组学在家养动物遗传育种中的应用[J]. 遗传, 2019, 41(2): 111-124. |
[11] | 陈建民. 植物遗传学中的世代及符号应用的建议[J]. 遗传, 2018, 40(6): 508-514. |
[12] | 张丽, 徐海冬, 冷奇颖, 刘艳芬, 赵志辉, 效梅, 吴江, 张权, 安立龙. 鸡快慢羽性状遗传学基础分析综合实验探索与实践[J]. 遗传, 2018, 40(3): 250-256. |
[13] | 马磊, 张婷婷. 应用嵌合基因实例拓展遗传学染色体畸变的教学[J]. 遗传, 2018, 40(12): 1129-1135. |
[14] | 陈德富,卢大儒,张飞雄,张根发. 中国遗传学教学40年发展及展望[J]. 遗传, 2018, 40(10): 916-923. |
[15] | 文莹, 张立新. 阿维菌素的中国“智”造[J]. 遗传, 2018, 40(10): 888-899. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: