[1] Adrio JL, Demain AL. Fungal biotechnology. Int Microbiol, 2003, 6(3): 191-199.[2] Fleiβner A, Dersch P. Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol, 2010, 87(4): 1255-1270.[3] Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol, 2003, 14(4): 438-443.[4] Ward OP, Qin WM, Hanjoon J, Ye J, Singh A. Physiology and biotechnology of Aspergillus. Adv Appl Microbiol, 2006, 58(1): 1-75.[5] Karnaukhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B, Shiloach J. Expression of human α1-proteinase inhibitor in Aspergillus niger. Microb Cell Fact, 2007, 6: 34.[6] Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Stam H. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol, 2007, 25(2): 221-231.[7] Clutterbuck AJ. The validity of the Aspergillus nidulans linkage map. Fungal Genet Biol, 1997, 21(3): 267-277.[8] Monsanto. 2001, Microbial Sequence Database, http://microbial.cereon.com.[9] Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Ba?türkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Birren BW. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438(7071): 1105-1115.[10] Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kikuchi H. Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005, 438(7071): 1157-1161.[11] Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Barrell B, Denning DW. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438(7071): 1151-1156.[12] Jones MG. The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens? Microbiology, 2007, 153(1): 1-6.[13] Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Brettin TS. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol, 2008, 26(5): 553-560.[14] Brakhage AA, Schroeckh V. Fungal secondary metabolites-strategies to activate silent gene clusters. Fungal Genet Biol, 2010, 48(1): 15-22.[15] Lopez M, Edens L. Effective prevention of chillhaze in beer using an acid proline-specific endoprotease from Aspergillus niger. J Agric Food Chem, 2005, 53(20): 7944-7949.[16] Edens L, Dekker P, van der Hoeven R, Deen F, de Roos A, Floris R. Extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates. J Agric Food Chem, 2005, 53(20): 7950-7957.[17] Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi PR, Kato M, Kitamoto K, Takeuchi M, Machida M. Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem, 2007, 71(3): 646-670.[18] David H, Özçelik IS, Hofmann G, Nielsen J. Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics, 2008, 9: 163.[19] Pinchuk GE, Rodionov DA, Yang C, Li XQ, Osterman AL, Dervyn E, Geydebrekht OV, Reed SB, Romine MF, Collart FR, Scott JH, Fredrickson JK, Beliaev AS. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci USA, 2009, 106(8): 2874-2879.[20] Yang C, Rodionov DA, Rodionova IA, Li XQ, Osterman AL. Glycerate 2-kinase of Thermotoga maritima and genomic reconstruction of related metabolic pathways. J Bacteriol, 2008, 190(5): 1773-1782.[21] Rodionov DA, Kurnasov OV, Stec B, Wang Y, Roberts MF, Osterman AL. Genomic identification and in vitro reconstitution of a complete biosynthetic pathway for the osmolyte di-myo-inositol-phosphate. Proc Natl Acad Sci USA, 2007, 104(11): 4279-4284.[22] Sorci L, Martynowski D, Rodionov DA, Eyobo Y, Zogaj X, Klose KE, Nikolaev EV, Magni G, Zhang H, Osterman AL. Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis. Proc Natl Acad Sci USA, 2009, 106(9): 3083-3088.[23] Piskur J, Schnackerz KD, Andersen G, Björnberg O. Comparative genomics reveals novel biochemical path-ways. Trends Genet, 2007, 23(8): 369-372.[24] Adrio JL, Demain AL. Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev, 2006, 30(2): 187-214.[25] Breakspear A, Momany M. The first fifty microarray studies in filamentous fungi. Microbiology, 2007, 153(1): 7-15.[26] Abe K, Gomi K, Hasegawa F, Machida M. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia, 2006, 162(3): 143-153.[27] Andersen MR, Nielsen ML, Nielsen J. Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol, 2008, 4: 178.[28] Chambergo FS, Bonaccorsi ED, Ferreira AJS, Ramos ASP, Ferreira Júnior JR, Abrahão-Neto J, Farah JP, El-Dorry H. Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem, 2002, 277(16): 13983-13988.[29] Kim Y, Nandakumar MP, Marten MR. The state of proteome profiling in the fungal genus Aspergillus. Brief Funct Genomic Proteomic, 2008, 7(2): 87-94.[30] Kniemeyer O, Lessing F, Scheibner O, Hertweck C, Brakhage AA. Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet, 2006, 49(3): 178-189.[31] Carberry S, Neville CM, Kavanagh KA, Doyle S. Analysis of major intracellular proteins of Aspergillus fumiga-tus by MALDI mass spectrometry: Identification and characterisation of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun, 2006, 341(4): 1096-1104.[32] Vödisch M, Albrecht D, Lessing F, Schmidt AD, Winkler R, Guthke R, Brakhage AA, Kniemeyer O. Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus. Proteomics, 2009, 9(5): 1407-1415.[33] Gonzalez-Vogel A, Eyzaguirre J, Oleas G, Callegari E, Navarrete M. Proteomic analysis in non-denaturing condition of the secretome reveals the presence of multienzyme complexes in Penicillium purpurogenum. Appl Microbiol Biotechnol, 2011, 89(1): 145-155.[34] Smedsgaard J, Nielsen J. Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot, 2005, 56(410): 273-286.[35] Soga T. Capillary electrophoresis-mass spectrometry for metabolomics. Methods Mol Biol, 2007, 358: 129-137.[36] Kouskoumvekaki I, Yang ZY, Jónsdóttir SÓ, Olsson L, Panagiotou G. Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification. BMC Bioinformatics, 2008, 9: 59.[37] Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol, 2002, 20(5): 200-206.[38] Gouka RJ, Punt PJ, van den Hondel CAMJJ. Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol, 1997, 47(1): 1-11.[39] Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM. Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Biotechnology (NY), 1990, 8(5): 435-440.[40] Conesa A, van den Hondel CAMJJ, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol, 2000, 66(7): 3016-3023.[41] Gustafsson, C, Govindrajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol, 2004, 22(7): 346-353.[42] Nelson G, Kozlova-Zwinderman O, Collis AJ, Knight MR, Fincham JRS, Stanger CP, Renwick A, Hessing JGM, Punt PJ, van den Hondel CAMJJ, Read ND. Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol Microbiol, 2004, 52(5): 1437-1450.[43] Koda, A, Bogaki T, Minetoki T, Hirotsune M. High expression of a synthetic gene encoding potato alpha-glucan phosphorylase in Aspergillus niger. J Biosci Bioeng, 2005, 100(5): 531-537.[44] Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC. Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell, 2008, 7(1): 28-37.[45] Te’o VSJ, Cziferszky AE, Bergquist PL, Nevallainen KMH. Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiol Lett, 2000, 190(1): 13-19.[46] Tokuoka M, Tanaka M, Ono K, Takagi S, Shintani T, Gomi K. Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression. Appl Environ Microbiol, 2008, 74(21): 6538-6546.[47] Talabardon M, Yang ST. Production of GFP and glucoamylase by recombinant Aspergillusniger: effects of fermentation conditions on fungal morphology and protein secretion. Biotechnol Prog, 2005, 21(5): 1389-1400.[48] Vahid K, Brookman JL, Robson GD. A study of the protein secretory pathway of Aspergillus niger using a glucoamylase-GFP fusion protein. Fungal Genet Biol, 2001, 32(1): 55-65.[49] Weenink XO, Punt PJ, van den Hondel CAMJJ, Ram AFJ. A new method for screening and isolation of hypersecretion mutants in Aspergillus niger. Appl Environ Microbiol, 2006, 69(6): 711-717.[50] Yoon J, Aishan T, Maruyama JI, Kitamoto K. Enhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzae via disruption of vacuolar protein sorting receptor gene Aovps10. Appl Environ Microbiol, 2010, 76(17): 5718-5727.[51] Herrmann M, Spröte P, Brakhage AA. Protein kinase C (PkcA) of Aspergillus nidulans is involved in penicillin production. Appl Environ Microbiol, 2006, 72(4): 2957-2970.[52] 谢林, 谢欣, 鞠桂芝. Aspergillus oryzae SAICAR合成酶基因的克隆及反义表达载体的构建. 中国生物制品学杂志, 2003, 16(5): 261-263.[53] Wang TH, Zhong YH, Huang W, Liu T, You YW. Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol, 2005, 40(6): 424-429.[54] van den Hombergh JPTW, Sollewijn Gelpke MD, van de Vondervoort PJI, Buxton FP, Visser J. Disruption of three acid proteases in Aspergillus niger-effects on protease spectrum, intracellular proteolysis, and degradation of target proteins. Eur J Biochem, 1997, 247(2): 605-613.[55] Wang Y, Xue W, Sims AH, Zhao C, Wang A, Tang G, Qin J, Wang H. Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol, 2008, 45(1): 17-27.[56] 刘丽, 刘谨, 仇润祥, 朱兴国, 唐国敏. 丝状真菌表达分泌系统中受体菌的构建. 生物工程学报, 2002, 18(6): 667-670.[57] 姚婷婷, 王衍敏, 顾建龙, 王正祥. 携多拷贝glaA的重组黑曲霉过量合成糖化酶的研究. 生物工程学报, 2006, 22(4): 567-571.[58] 孙晶, 李景鹏, 王敖全, 唐国敏, 王华明. 黑曲霉pepB基因缺失菌株的构建及其功能分析. 微生物学报, 2004, 44(6): 766-770.[59] Yoon J, Maruyama J, Kitamoto K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol, 2011, 89(3): 747-759.[60] 周礼红, 王正祥, 诸葛健. 红曲霉不同转化方法的比较. 遗传, 2006, 28(4): 479-485.[61] 王教瑜, 杜新法, 柴荣耀, 孙国昌, 林福呈. 丝状真菌目标基因替换过程中的策略与方法. 遗传, 2007, 29(7): 898-904.[62] Kopke K, Hoff B, Kück U. Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol, 2010, 76(14): 4664-4674.[63] Pachlinger R, Mitterbauer R, Adam G, Strauss J. Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl Environ Microbiol, 2005, 71(2): 672-678. |