[1] Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae10D. Nature, 2004, 428(6983): 653-657.[2] 牛建峰, 高胜寒, 骆迎峰, 袁野, 王广策, 胡松年. 条斑紫菜低覆盖度基因组草图分析. 海洋科学, 2011, 35(6): 76-81.[3] Sahoo D, Tang XR, Yarish C. Porphyra-the economic seaweed as a new experimental system. Curr Sci, 2002, 83(11): 1313-1316.[4] Peters AF, Marie D, Scornet D, Kloareg B, Cock JM. Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J Phycol, 2004, 40(6): 1079-1088.[5] Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collén J, Corre E, Silva CD, Delaga L. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465(7298): 617-621.[6] Derellea E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piégu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, van de Peer Y, Moreau H. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique fea-tures. Proc Natl Acad Sci USA, 2006, 103(31): 11647-11652.[7] Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou KM, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Pi-ganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren QH, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, van de Peer Y, Moreau H, Grigoriev IV. The tiny eukaryote Ostreo-coccus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA, 2007, 104(18): 7705-7710.[8] Keeling PJ. Ostreococcus tauri: seeing through the genes to the genome. Trends Genet, 2007, 23(4): 151-154.[9] Merchant SS, Prochnik SE, Vallon O, Harris EH, Kar-powicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren QH, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grossman AR. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 2007, 318(5848): 245-250.[10] Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov Oleg, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shpiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigo-riev IV, Schmitt R, Kirk D, Rokhsar DS. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science, 2010, 329(5988): 223-226.[11] Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, van Etten JL. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell, 2010, 22(9): 2943-2955.[12] Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou SG, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Dema-rest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten |