遗传 ›› 2023, Vol. 45 ›› Issue (9): 845-855.doi: 10.16288/j.yczz.23-058
• 研究报告 • 上一篇
郝小花1,2(), 胡爽2, 赵丹2, 田连福2, 谢子靖2, 吴莎2, 胡文俐2, 雷晗2, 李东屏2()
收稿日期:
2023-03-15
修回日期:
2023-06-14
出版日期:
2023-09-20
发布日期:
2023-07-19
通讯作者:
李东屏
E-mail:14771417@qq.com;dli@hunnu.edu.cn
作者简介:
郝小花,博士,副教授,研究方向:植物生理与分子生物学。E-mail: 基金资助:
Xiaohua Hao1,2(), Shuang Hu2, Dan Zhao2, Lianfu Tian2, Zijing Xie2, Sha Wu2, Wenli Hu2, Han Lei2, Dongping Li2()
Received:
2023-03-15
Revised:
2023-06-14
Online:
2023-09-20
Published:
2023-07-19
Contact:
Dongping Li
E-mail:14771417@qq.com;dli@hunnu.edu.cn
Supported by:
摘要:
赤霉素(gibberellin,GA)是一种重要的激素,参与调控植物多种生长发育过程。GA生物合成通路已基本阐明,其中赤霉素3β羟化酶(gibberellin 3β-hydroxylase,GA3ox)是多种活性GA合成的关键酶。水稻中有2个GA3ox基因(OsGA3ox1和OsGA3ox2),其生理功能虽有初步研究,但它们在合成活性GA调控水稻发育过程中是如何分工协作尚不清楚。本研究通过CRISPR/Cas9技术获得基因编辑突变体ga3ox1和ga3ox2,发现ga3ox1花粉育性显著下降,而ga3ox2株高显著变矮,表明OsGA3ox1是花粉正常发育必需的,而OsGA3ox2是茎叶伸长必需的。组织表达分析表明,OsGA3ox1主要在未开的花中表达,OsGA3ox2主要在未伸长的叶中表达。进一步对野生型(WT)和两个ga3ox突变体未开的花、未伸长的叶及根中的GA进行检测分析,发现OsGA3ox1在花中催化GA9形成GA7与花粉育性密切相关;OsGA3ox2在未伸长的叶中催化GA20形成GA1调控株高;OsGA3ox1在根中催化GA19形成GA20,调控GA3的生成。总之,OsGA3ox1和OsGA3ox2响应发育信号,在不同组织分工协作合成内源GA,调控水稻生长和发育。本研究为阐明OsGA3ox1和OsGA3ox2在GA生物合成中的作用以及深入理解OsGA3ox的功能提供参考。
郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855.
Xiaohua Hao, Shuang Hu, Dan Zhao, Lianfu Tian, Zijing Xie, Sha Wu, Wenli Hu, Han Lei, Dongping Li. OsGA3ox genes regulate rice fertility and plant height by synthesizing diverse active GA[J]. Hereditas(Beijing), 2023, 45(9): 845-855.
表1
本研究所用引物信息"
引物名称 | 引物序列(5′→3′) | 用途 |
---|---|---|
OsGA3ox1-RT-PCR | F:CGAGACCGAGCGGAAGA | 半定量RT-PCR和实时荧光定量PCR |
R:GCCGACGACGACGATGA | ||
OsGA3ox2-RT-PCR | F:TTCTCCAAGCTCATGTGGTC | 半定量RT-PCR和实时荧光定量PCR |
R:GCATCTCCTTGTGAAACTC | ||
OsActin2-RT-PCR | F:ATGTGCCAGCTATGTATGTC | 半定量RT-PCR和实时荧光定量PCR |
R:CGTTCAGCAGTGGTAGTGA | ||
OsGA3ox1-Cas9-1 | F:GCCGGAGTCGCACGTGTGGA | 构建CRISPR/Cas9基因编辑载体 |
R:TCCACACGTGCGACTCCGGC | ||
OsGA3ox1-Cas9-2 | F:CGATGAGAGCTCTGGGCGAG | 构建CRISPR/Cas9基因编辑载体 |
R:CTCGCCCAGAGCTCTCATCG | ||
OsGA3ox2-Cas9-1 | F:GCTCTGCTTCGACTTCCGGG | 构建CRISPR/Cas9基因编辑载体 |
R:CCCGGAAGTCGAAGCAGAGC | ||
OsGA3ox2-Cas9-2 | F:GAGAAGATGCGCGCCGTCCG | 构建CRISPR/Cas9基因编辑载体 |
R:CGGACGGCGCGCATCTTCTC | ||
OsGA3ox1-GUS | F:GGTTTTCATGCCATGCCAAT | 构建GUS表达载体 |
R:GCATGAACTCGTTGGCTA | ||
OsGA3ox2-GUS | F:ATAGTCCTCGGCAAGAAG | 构建GUS表达载体 |
R:CGACGACGACGACGAT |
图2
ga3ox1和ga3ox2突变体表型 A:WT和ga3ox1突变体幼苗期植株形态;B:WT和ga3ox1突变体孕穗期植株形态;C:WT和ga3ox1突变体在幼苗期和孕穗期地下、地上长度统计;D:WT、ga3ox1和ga3ox2突变体花粉碘液染色观察;E:WT和ga3ox2突变体幼苗期形态;F:WT和ga3ox2突变体开花期形态;G:WT和ga3ox2突变体开花期倒一、二、三节及节间形态(蓝色*表示WT倒一、二节的位置,红色*表示突变体倒一、二节的位置);H:WT和ga3ox2突变体成熟期株高统计;I:WT和ga3ox2突变体成熟期倒一、二、三节节间长度统计(I、II、III分别表示倒一、二、三节节间);J:WT、ga3ox1和ga3ox2突变体花粉育性统计;K:WT、ga3ox1和ga3ox2突变体结实率统计。A、G图比例尺=2 cm,B、F图比例尺=10 cm,D图比例尺=40 μm,E图比例尺=3 cm;显著性分析以WT为对照,**表示P<0.01,极显著性差异。"
[1] |
Gao SP, Chu CC. Gibberellin metabolism and signaling: targets for improving agronomic performance of crops. Plant Cell Physiol, 2020, 61(11): 1902-1911.
doi: 10.1093/pcp/pcaa104 pmid: 32761079 |
[2] |
Jin Y, Song XY, Chang HZ, Zhao YY, Cao CH, Qiu XB, Zhu J, Wang ET, Yang ZN, Yu N. The GA-DELLA- OsMS188 module controls male reproductive development in rice. New Phytol, 2022, 233(6): 2629-2642.
doi: 10.1111/nph.v233.6 |
[3] |
Mo WP, Tang WJ, Du YX, Jing YJ, Bu QY, Lin RC. PHYTOCHROME-INTERACTING FACTOR-LIKE14 and SLENDER RICE1 interaction controls seedling growth under salt stress. Plant Physiol, 2020, 184(1): 506-517.
doi: 10.1104/pp.20.00024 pmid: 32581115 |
[4] |
Li LL, Zhang HH, Yang ZH, Wang C, Li SS, Cao C, Yao TS, Wei ZY, Li YJ, Chen JP, Sun ZT. Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice. Nat Commun, 2022, 13(1): 6920.
doi: 10.1038/s41467-022-34649-z pmid: 36376330 |
[5] | Tang JQ, Tian XJ, Mei EY, He ML, Gao JW, Yu J, Xu M, Liu JL, Song L, Li XF, Wang ZY, Guan QJ, Zhao ZG, Wang CM, Bu QY. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. Plant Cell, 2022, 4(11): 4495-4515. |
[6] |
Sun HW, Guo XL, Zhu XL, Gu PY, Zhang W, Tao WQ, Wang DJ, Wu YZ, Zhao QZ, Xu GH, Fu XD, Zhang YL. Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. Mol Plant, 2023, 16(3): 588-598.
doi: 10.1016/j.molp.2023.01.009 |
[7] |
Eriksson S, Böhlenius H, Moritz T, Nilsson O. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell, 2006, 18(9): 2172-2181.
pmid: 16920780 |
[8] | Murakami Y. Endogenous gibberellins in the panicle of rice plants determined by the rice seedling bioassay. Jarq-Jpn Agr Res Q, 1983, 17(3): 154-160. |
[9] | Kobayashi M, Sakurai A, Saka H, Takahashi N. Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiol, 1989, 30(7): 963-969. |
[10] | Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N. Fluctuation and localization of endogenous gibberellins in rice. Agr Biol Chem, 1988, 5(52): 1189-1194. |
[11] |
Hasegawa M, Nakajima M, Takeda K, Yamaguchi I, Murofushi N. Endogenous levels of gibberellins in normal and male sterile anthers of rice (Oryza sativa cv. Nihonmasari). Biosci Biotech Bioch, 1995, 59(9): 1716-1720.
doi: 10.1271/bbb.59.1716 |
[12] |
Honda I, Iwasaki S, Sudo K, Kato H, Maruyama K, Hasegawa M, Yamaguchi I, Murofushi N, Yanagisawa T, Takahashi N. Semi quantification of gibberellins in the anthers of thermosensitive genetic male sterile rice (Oryza sativa L. cv.PL12). Biosci Biotech Bioch, 1997, 61(10): 1748-1750.
doi: 10.1271/bbb.61.1748 |
[13] |
Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134(4): 1642-1653.
doi: 10.1104/pp.103.033696 pmid: 15075394 |
[14] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YIC, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437(7059): 693-698.
doi: 10.1038/nature04028 |
[15] |
Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19(7): 2140-2155.
doi: 10.1105/tpc.106.043729 pmid: 17644730 |
[16] |
Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin- dependent degradation of SLR1 in rice. Plant J, 2004, 37(4): 626-634.
doi: 10.1111/j.1365-313X.2003.01990.x |
[17] | Olszewski N, Sun TP, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell, 2002, 14(Suppl): S61-S80. |
[18] |
Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, Yu SM. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 2008, 20(10): 2603-2618.
doi: 10.1105/tpc.108.060913 |
[19] |
Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact, 2013, 26(2): 227-239.
doi: 10.1094/MPMI-05-12-0138-R |
[20] |
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf(sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99(13): 9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303 |
[21] |
Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98(5): 8909-8914.
doi: 10.1073/pnas.141239398 |
[22] | Murakami Y. Dwarfing genes in rice and their relation to glbberellin biosynthesis. In: Carr DJ, Plant Growth Substances. Springer-Verlag, Berlin, Germany, eds. 1970, 166-174. |
[23] |
Hu SK, Hu XM, Hu J, Shang LG, Dong GJ, Zeng DL, Gou LB, Qian Q. Xiaowei, a new rice germplasm for large- scale indoor research. Mol Plant, 2018, 11(11): 1418-1420.
doi: 10.1016/j.molp.2018.08.003 |
[24] | Kobayashi M, Kamiya Y, Sakurai A, Saka H, Takahashi N. Metabolism of gibberellins in cell-free extracts of anthers from normal and dwarf rice. Plant Cell Physiol, 1990, 31(2): 289-293. |
[25] |
Miao J, Guo DS, Zhang JZ, Huang QP, Qin GJ, Zhang X, Wan JM, Gu HY, Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013, 23(10): 1233-1236.
doi: 10.1038/cr.2013.123 pmid: 23999856 |
[26] |
Li J, Huang Y, Tan H, Yang X, Tian LF, Luan S, Chen LB, Li DP. An endoplasmic reticulum magnesium transporter is essential for pollen development in Arabidopsis. Plant Sci, 2015, 231: 212-220.
doi: 10.1016/j.plantsci.2014.12.008 pmid: 25576006 |
[27] |
Chen ML, Fu XM, Liu JQ, Ye TT, Hou SY, Huang YQ, Yuan BF, Wu Y, Feng YQ. Highly sensitive and quantitative profiling of acidic phytohormones using derivatization approach coupled with nano-LC-ESI-Q- TOF-MS analysis. J Chromatogr B, 2012, 905: 67-74.
doi: 10.1016/j.jchromb.2012.08.005 |
[28] |
Uozu S, Tanaka-Ueguchi M, Kitano H, Hattori K, Matsuoka M. Characterization of XET-related genes of rice. Plant Physiol, 2000, 122(3): 853-859.
pmid: 10712549 |
[29] |
Lee Y, Kende H. Expression of β-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol, 2001, 127(2): 645-654.
pmid: 11598238 |
[30] |
Lee Y, Kende H. Expression of α-expansin and expansin- like genes in deepwater rice. Plant Physiol, 2002, 130(3): 1396-1405.
doi: 10.1104/pp.008888 pmid: 12428004 |
[31] | Hao XH, Xiang YT, Zeng M, Yang YW, Xie P, Li M, Li DP, Tian LF. Cytological characteristics and gene location of a rice Dwarf mutant. Life Sci Res, 2021, 25(1): 39-47. |
郝小花, 向玉婷, 曾孟, 杨友伟, 谢鹏, 李密, 李东屏, 田连福. 水稻矮杆突变体的细胞学特征及基因定位研究. 生命科学研究, 2021, 25(1): 39-47. | |
[32] |
Lu YZ, Feng Z, Meng YL, Bian LY, Xie H, Mysore KS, Liang JS. SLENDER RICE1 and Oryza sativa INDETERMINATE DOMAIN2 regulating OsmiR396 are involved in stem elongation. Plant Physiol, 2020, 182(4): 2213-2227.
doi: 10.1104/pp.19.01008 |
[33] |
Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu JZ, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch SR, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361(6398): 181-186.
doi: 10.1126/science.aat1577 pmid: 30002253 |
[34] |
Cheng JY, Hill CB, Shabala S, Li CD, Zhou MX. Manipulating GA-related genes for cereal crop improvement. Int J Mol Sci, 2022, 23(22): 14046.
doi: 10.3390/ijms232214046 |
[35] | Cheng XY, Huang YP, Tan Y, Tan L, Yin JH, Zou GX. Potentially useful dwarfing or semi-dwarfing genes in rice breeding in addition to the sd1 gene. Rice (N Y), 2022, 15(1): 66. |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[3] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[4] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[5] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[6] | 慕蓉蓉, 牛晴晴, 孙玉强, 梅俊, 苗蒙. 陆地棉MYB类转录因子基因GhTT2克隆及功能初步分析[J]. 遗传, 2022, 44(8): 720-728. |
[7] | 赵三增, 孔丹宇, 辛培勇, 褚金芳, 万迎朗, 凌宏清, 刘毅. AtCPS V326M突变显著影响赤霉素合成[J]. 遗传, 2022, 44(3): 245-252. |
[8] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[9] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[10] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[11] | 闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[12] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[13] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[14] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[15] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: