[1] A rnholdt-Schmitt B. Stress-induced cell reprogramming. A role for global genome regulation? Plant Physiol, 2004, 136(1): 2579-2586.[2] Doroszuk A, Wojewodzic MW, Kammenga JE. Rapid adaptive divergence of life-history traits in response to abiotic stress within a natural population of a parthenogenetic nematode. Proc Biol Sci, 2006, 273(1601): 2611-2618.[3] Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009, 12(2): 133-139.[4] Meyer P. DNA methylation systems and targets in plants. FEBS Lett, 2011, 585(13): 2008-2015.[5] Vanyushin BF, Ashapkin VV. DNA methylation in higher plants: past, present and future. Biochim Biophys Acta, 2011, 1809(8): 360-368.[6] Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11(3): 204-220.[7] Gilbert DM, Wallrath LL. Chromatin and chromosomes. Mol Biol Cell, 2011, 22(6): 717.[8] Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol, 2010, 19(7): 1283-1295.[9] Milutinovic S, Zhuang QL, Niveleau A, Szyf M. Epigenomic stress response. Knockdown of DNA methyltrans-ferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem, 2003, 278(17): 14985-14995.[10] Cao XF, Jacobsen SE. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol, 2002, 12(13): 1138-1144.[11] Cao XF, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol, 2003, 13(24): 2212-2217.[12] Bartee L, Malagnac F, Bender J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev, 2001, 15(14): 1753-1758.[13] Melamed-Bessudo C, Levy AA. Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109(16): E981-E988.[14] Boyko A, Kathiria P, Zemp FJ, Yao YL, Pogribny I, Kovalchuk I. Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res, 2007, 35(5): 1714-1725.[15] Boyko A, Blevins T, Yao YL, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, Kovalchuk I. Trans-generational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One, 2010, 5(3): e9514.[16] Boyko A, Kovalchuk I. Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Mol Plant, 2011, 4(6): 1014-1023.[17] Labra M, Grassi F, Imazio S, Di Fabio T, Citterio S, Sgorbati S, Agradi E. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere, 2004, 54(8): 1049-1058.[18] Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem, 2002, 277(40): 37741-37746.[19] Choi CS, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glyc-erophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics, 2007, 277(5): 589-600.[20] Jiang N, Bao ZR, Zhang XY, Hirochika H, Eddy SR, McCouch SR, Wessler SR. An active DNA transposon family in rice. Nature, 2003, 421(6919): 163-167.[21] Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environ Mol Mutagen, 2008, 49(1): 61-72.[22] Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ, 2010, 33(4): 604-611.[23] Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional di-versification of chromatin modification among multicel-lular eukaryotes. Nucleic Acids Res, 2002, 30(23): 5036-5055.[24] Bertrand C, Bergounioux C, Domenichini S, Delarue M, Zhou DX. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/ AGAMOUS pathway. J Biol Chem, 2003, 278(30): 28246-28251.[25] Hark AT, Vlachonasios KE, Pavangadkar KA, Rao S, Gordon H, Adamakis ID, Kaldis A, Thomashow MF, Triezenberg SJ. Two Arabidopsis orthologs of the tran-scriptional coactivator ADA2 have distinct biological functions. Biochim Biophys Acta, 2009, 1789(2): 117-124.[26] Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE. Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta, 2011, 233(4): 749-762.[27] Vlachonasios KE, Thomashow MF, Triezenberg SJ. Dis-ruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell, 2003, 15(3): 626-638.[28] Hu Y, Zhang L, He S, Huang M, Tan JJ, Zhao L, Yan SH, Li H, Zhou K, Liang YN, Li LJ. Cold stress selectively unsilences tandem repeats in heterochromatin associated with accumulation of H3K9ac. Plant Cell Environ, 2012, 35(12): 2130-2142.[29] Zhou CH, Zhang L, Duan J, Miki B, Wu KQ. HISTONE DEACETYLASE19 is involved in jasmonic acid and eth-ylene signaling of pathogen response in Arabidopsis. Plant Cell, 2005, 17(4): 1196-1204.[30] Wu KQ, Zhang L, Zhou CH, Yu CW, Chaikam V. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot, 2008, 59(2): 225-234.[31] Chen LT, Luo M, Wang YY, Wu KQ. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot, 2010, 61(12): 3345-3353.[32] To TK, Nakaminami K, Kim JM, Morosawa T, Ishida J, Tanaka M, Yokoyama S, Shinozaki K, Seki M. Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun, 2011, 406(3): 414-419.[33] Kim KC, Lai ZB, Fan BF, Chen ZX. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell, 2008, 20(9): 2357-2371.[34] Chen LT, Wu KQ. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav, 2010, 5(10): 1318-1320.[35] Pontvianne F, Blevins T, Pikaard CS. Arabidopsis histone lysine methyltransferases. Adv Bot Res, 2010, 53: 1-22.[36] Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong AW, Shen WH. SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol, 2009, 151(3): 1476-1485.[37] Jacob Y, Feng SH, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, Johnson LM, Pellegrini M, Jacobsen SE, Michaels SD. ATXR5 and ATXR6 are H3K27 mono-methyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol, 2009, 16(7): 763-768.[38] Jackson JP, Lindroth AM, Cao XF, Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE his-tone H3 methyltransferase. Nature, 2002, 416(6880): 556-560.[39] Ding Y, Lapko H, Ndamukong I, Xia YN, Al-Abdallat A, Lalithambika S, Sadder M, Saleh A, Fromm M, Riethoven JJ, Lu GQ, Avramova Z. The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM, and the response to drought. Plant Signal Behav, 2009, 4(11): 1049-1058.[40] Ndamukong I, Jones DR, Lapko H, Divecha N, Avramova Z. Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1. PLoS One, 2010, 5(10): e13396.[41] Jiang DH, Wang YQ, Wang YZ, He YH. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 compo-nents. PLoS One, 2008, 3(10): e3404.[42] Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M. Al-terations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol, 2008, 49(10): 1580-1588.[43] Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep, 2002, 3(3): 224-229.[44] Kumar SV, Wigge PA. H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 2010, 140(1): 136-147.[45] Havas K, Whitehouse I, Owen-Hughes T. ATP-dependent chromatin remodeling activities. Cell Mol Life Sci, 2001, 58(5-6): 673-682.[46] Geiman TM, Robertson KD. Chromatin remodeling, his-tone modifications, and DNA methylation-how does it all fit together? J Cell Biochem, 2002, 87(2): 117-125.[47] Mlynárová L, Nap JP, Bisseling T. The SWI/SNF chroma-tin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J, 2007, 51(5): 874-885.[48] Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell, 2008, 20(11): 2972-2988.[49] Rios G, Gagete AP, Castillo J, Berbel A, Franco L, Rod-rigo MI. Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum. Plant Physiol Biochem, 2007, 45(6-7): 427-435.[50] Jeddeloh JA, Stokes TL, Richards EJ. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet, 1999, 22(1): 94-97.[51] Yao YL, Bilichak A, Golubov A, Kovalchuk I. ddm1 plants are sensitive to methyl methane sulfonate and NaCl stresses and are deficient in DNA repair. Plant Cell Rep, 2012, 31(9): 1549-1561.[52] Ramachandran V, Chen XM. Small RNA metabolism in Arabidopsis. Trends Plant Sci, 2008, 13(7): 368-374.[53] Phillips JR, Dalmay T, Bartels D. The role of small RNAs in abiotic stress. FEBS Lett, 2007, 581(19): 3592-3597.[54] Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK. En-dogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123(7): 1279-1291.[55] Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet, 2006, 38(Suppl.): S31-S36.[56] Sunkar R, Chinnusamy V, Zhu JJ, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci, 2007, 12(7): 301-309.[57] Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutiérrez-Nava M, Poethig SR. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development, 2006, 133(15): 2973-2981.[58] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.[59] Yao YL, Bilichak A, Golubov A, Blevins T, Kovalchuk I. Differential sensitivity of Arabidopsis siRNA biogenesis mutants to genotoxic stress. Plant Cell Rep, 2010, 29(12): 1401-1410.[60] Yan YS, Zhang YM, Yang K, Sun ZX, Fu YP, Chen XY, Fang RX. Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J, 2011, 65(5): 820-828.[61] Pulido A, Laufs P. Co-ordination of developmental proc-esses by small RNAs during leaf development. J Exp Bot, 2010, 61(5): 1277-1291.[62] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001-2019.[63] Shen JQ, Xie KB, Xiong LZ. Global expression profiling of rice microRNAs by one-tube stem-loop reverse tran-scription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Ge-nomics, 2010, 284(6): 477-488.[64] Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J, 2007, 49(4): 592-606.[65] Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J, 2007, 52(1): 133-146.[66] Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene, 2010, 459(1-2): 39-47.[67] Gao P, Bai X, Yang L, Lv DK, Li Y, Cai H, Ji W, Guo DJ, Zhu YM. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta, 2010, 231(5): 991-1001. |