[1] A rnholdt-Schmitt B. Stress-induced cell reprogramming. A role for global genome regulation? Plant Physiol, 2004, 136(1): 2579-2586.[2] Doroszuk A, Wojewodzic MW, Kammenga JE. Rapid adaptive divergence of life-history traits in response to abiotic stress within a natural population of a parthenogenetic nematode. Proc Biol Sci, 2006, 273(1601): 2611-2618.[3] Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009, 12(2): 133-139.[4] Meyer P. DNA methylation systems and targets in plants. FEBS Lett, 2011, 585(13): 2008-2015.[5] Vanyushin BF, Ashapkin VV. DNA methylation in higher plants: past, present and future. Biochim Biophys Acta, 2011, 1809(8): 360-368.[6] Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11(3): 204-220.[7] Gilbert DM, Wallrath LL. Chromatin and chromosomes. Mol Biol Cell, 2011, 22(6): 717.[8] Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol, 2010, 19(7): 1283-1295.[9] Milutinovic S, Zhuang QL, Niveleau A, Szyf M. Epigenomic stress response. Knockdown of DNA methyltrans-ferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem, 2003, 278(17): 14985-14995.[10] Cao XF, Jacobsen SE. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol, 2002, 12(13): 1138-1144.[11] Cao XF, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol, 2003, 13(24): 2212-2217.[12] Bartee L, Malagnac F, Bender J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev, 2001, 15(14): 1753-1758.[13] Melamed-Bessudo C, Levy AA. Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109(16): E981-E988.[14] Boyko A, Kathiria P, Zemp FJ, Yao YL, Pogribny I, Kovalchuk I. Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res, 2007, 35(5): 1714-1725.[15] Boyko A, Blevins T, Yao YL, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, Kovalchuk I. Trans-generational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One, 2010, 5(3): e9514.[16] Boyko A, Kovalchuk I. Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Mol Plant, 2011, 4(6): 1014-1023.[17] Labra M, Grassi F, Imazio S, Di Fabio T, Citterio S, Sgorbati S, Agradi E. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere, 2004, 54(8): 1049-1058.[18] Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem, 2002, 277(40): 37741-37746.[19] Choi CS, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glyc-erophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics, 2007, 277(5): 589-600.[20] Jiang N, Bao ZR, Zhang XY, Hirochika H, Eddy SR, McCouch SR, Wessler SR. An active DNA transposon family in rice. Nature, 2003, 421(6919): 163-167.[21] Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environ Mol Mutagen, 2008, 49(1): 61-72.[22] Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ, 2010, 33(4): 604-611.[23] Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bende |