[1] Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol, 2007, 42(5): 399–435. <\p>
[2] Luria SE, Delbruck M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 1943, 28(6): 491–511. <\p>
[3] Lederberg J, Lederberg EM. Replica plating and indirect selection of bacterial mutants. J Bacteriol, 1952, 63(3): 399–406. <\p>
[4] Shapiro JA. Observations on the formation of clones containing araB–lacZ cistron fusions. Mol Gen Genet, 1984, 194(1–2): 79–90. <\p>
[5] Hall BG. Directed evolution of a bacterial operon. Bioessays, 1990, 12(11): 551–558. <\p>
[6] Cairns J, Foster PL. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics, 1991, 128(4): 695–701. <\p>
[7] Shor E, Fox CA, Broach JR. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. Plos Genet, 2013, 9(8): E1003680. <\p>
[8] 张汉波, 沙涛, 程立忠, 丁骅孙, 施雯, 于春蓓, 张会荣. 大肠杆菌FC40系统静止期突变中的F因子转移. 遗传, 2003, 25(4): 428–432. <\p>
[9] 吕忠, 王敖全. 研究适应突变的一个新的实验系统. 中国科学C辑, 2000, 30(5): 547–553. <\p>
[10] Rosenberg SM. Evolving responsively: adaptive mutation. Nat Rev Genet, 2001, 2(7): 504–515. <\p>
[11] Foster PL. Stress–induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol, 2007, 42(5): 373–397. <\p>
[12] Foster PL. Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu Rev Genet, 1999, 33: 57–88. <\p>
[13] Hall BG. Spectra of spontaneous growth–dependent and adaptive mutations at ebgR. J Bacteriol, 1999, 181(4): 1149–1155. <\p>
[14] Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I. Stress–induced mutagenesis in bacteria. Science, 2003, 300(5624): 1404–1409. <\p>
[15] Kang JM, Iovine NM, Blaser MJ. A paradigm for direct stress–induced mutation in prokaryotes. FASEB J, 2006, 20(14): 2476–2485. <\p>
[16] Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI. Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol, 2006, 60: 477– 501. <\p>
[17] Hastings PJ, Bull HJ, Klump JR, Rosenberg SM. Adaptive amplification: an inducible chromosomal instability mechanism. Cell, 2000, 103(5): 723–731. <\p>
[18] 张汉波, 沙涛, 程立忠, 丁骅孙. 适应性突变的遗传学特征. 遗传, 2002, 24(3): 395–398. <\p>
[19] Burch LH, Yang Y, Sterling JF, Roberts SA, Chao FG, Xu H, Zhang LL, Walsh J, Resnick MA, Mieczkowski PA, Gordenin DA. Damage–induced localized hypermutability. Cell Cycle, 2011, 10(7): 1073–1085. <\p>
[20] Kim N, Jinks–Robertson S. Transcription as a source of genome instability. Nature Rev Gene, 2012, 13(3): 204– 214. <\p>
[21] Rosenberg SM, Shee C, Frisch RL, Hastings PJ. Stress– induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine. Bioessays, 2012, 34(10): 885–892. <\p>
[22] Shee C, Gibson JL, Darrow MC, Gonzalez C, Rosenberg SM. Impact of a stress–inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci USA, 2011, 108(33): 13659–13664. <\p>
[23] Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science, 2012, 336(6079): 315–319. <\p>
[24] Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical– induced mutagenesis. Mol Cell, 2010, 37(3): 311–320. <\p>
[25] Ponder RG, Fonville NC, Rosenberg |