[1] Divol B, du Toit M, Duckitt E. Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol, 2012, 95(3): 601–613.<\p>
[2] Hinze H, Holzer H. Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite. Arch Microbiol, 1986, 145(1): 27–31.<\p>
[3] Hinze H, Holzer H. Effect of sulfite or nitrite on the ATP content and the carbohydrate metabolism in yeast. Z Le-bensm Unters Forsch, 1985, 181(2): 87–91.<\p>
[4] Schimz KL, Holzer H. Rapid decrease of ATP content in intact cells of Saccharomyces cerevisiae after incubation with low concentrations of sulfite. Arch Microbiol, 1979, 121(3): 225–229.<\p>
[5] Rankine BC, Pocock KF. Influence of yeast strain on binding of sulphur dioxide in wines, and on its formation during fermentation. J Sci Food Agric, 1969, 20(2): 104–109.<\p>
[6] Divol B, Miot-Sertier C, Lonvaud-Funel A. Genetic char-acterization of strains of Saccharomycescerevisiae re-sponsible for ‘refermentation’ in Botrytis-affected wines. J Appl Microbiol, 2006, 100(3): 516–526.<\p>
[7] Nardi T, Corich V, Giacomini A, Blondin B. A sulphite- inducible form of the sulphite efflux gene SSU1 in a Sac-charomyces cerevisiae wine yeast. Microbiology, 2010, 156(Pt 6): 1686–1696.<\p>
[8] Engle EK, Fay JC. Divergence of the yeast transcription factor FZF1 affects sulfite resistance. PLoS Genet, 8(6): e1002763.<\p>
[9] Sarver A, DeRisi J. Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol Biol Cell, 2005, 16(10): 4781–4791.<\p>
[10] 陈叶福, 沈世超, 王艳, 肖冬光. SSU1多拷贝表达对酿酒酵母二氧化硫生成量的影响. 微生物学报, 2008, 48(12): 1609–1615.<\p>
[11] Iijima K, Ogata T. Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 ex-pression. J Appl Microbiol, 2010, 109(6): 1906–1913.<\p>
[12] Avram D, Bakalinsky AT. SSU1 encodes a plasma mem-brane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol, 1997, 179(18): 5971–5974.<\p>
[13] White MA, Clark KM, Grayhack EJ, Dumont ME. Char-acteristics affecting expression and solubilization of yeast membrane proteins. J Mol Biol, 2007, 365(3): 621– 636.<\p>
[14] Park H, Bakalinsky AT. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast, 2000, 16(10): 881–888.<\p>
[15] Pérez-Ortín JE, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement in-volved in the adaptive evolution of yeast strains. Genome Res, 2002, 12(10): 1533–1539.<\p>
[16] Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW. Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res, 2006, 6(5): 702–715.<\p>
[17] Török T, Mortimer RK, Romano P, Suzzi G, Polsinelli M. Quest for wine yeasts-An old story revisited. J Ind Micro-biol, 1996, 17(3–4): 303–313.<\p>
[18] Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O'Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ. Population genomics of domestic and wild yeasts. Nature, 2009, 458(7236): 337–341.<\p>
[19] Fay JC, Benavides JA. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet, 2005, 1(1): e5.<\p>
[20] Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, N |