[1] Divol B, du Toit M, Duckitt E. Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol, 2012, 95(3): 601–613.<\p>
[2] Hinze H, Holzer H. Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite. Arch Microbiol, 1986, 145(1): 27–31.<\p>
[3] Hinze H, Holzer H. Effect of sulfite or nitrite on the ATP content and the carbohydrate metabolism in yeast. Z Le-bensm Unters Forsch, 1985, 181(2): 87–91.<\p>
[4] Schimz KL, Holzer H. Rapid decrease of ATP content in intact cells of Saccharomyces cerevisiae after incubation with low concentrations of sulfite. Arch Microbiol, 1979, 121(3): 225–229.<\p>
[5] Rankine BC, Pocock KF. Influence of yeast strain on binding of sulphur dioxide in wines, and on its formation during fermentation. J Sci Food Agric, 1969, 20(2): 104–109.<\p>
[6] Divol B, Miot-Sertier C, Lonvaud-Funel A. Genetic char-acterization of strains of Saccharomycescerevisiae re-sponsible for ‘refermentation’ in Botrytis-affected wines. J Appl Microbiol, 2006, 100(3): 516–526.<\p>
[7] Nardi T, Corich V, Giacomini A, Blondin B. A sulphite- inducible form of the sulphite efflux gene SSU1 in a Sac-charomyces cerevisiae wine yeast. Microbiology, 2010, 156(Pt 6): 1686–1696.<\p>
[8] Engle EK, Fay JC. Divergence of the yeast transcription factor FZF1 affects sulfite resistance. PLoS Genet, 8(6): e1002763.<\p>
[9] Sarver A, DeRisi J. Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol Biol Cell, 2005, 16(10): 4781–4791.<\p>
[10] 陈叶福, 沈世超, 王艳, 肖冬光. SSU1多拷贝表达对酿酒酵母二氧化硫生成量的影响. 微生物学报, 2008, 48(12): 1609–1615.<\p>
[11] Iijima K, Ogata T. Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 ex-pression. J Appl Microbiol, 2010, 109(6): 1906–1913.<\p>
[12] Avram D, Bakalinsky AT. SSU1 encodes a plasma mem-brane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol, 1997, 179(18): 5971–5974.<\p>
[13] White MA, Clark KM, Grayhack EJ, Dumont ME. Char-acteristics affecting expression and solubilization of yeast membrane proteins. J Mol Biol, 2007, 365(3): 621– 636.<\p>
[14] Park H, Bakalinsky AT. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast, 2000, 16(10): 881–888.<\p>
[15] Pérez-Ortín JE, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement in-volved in the adaptive evolution of yeast strains. Genome Res, 2002, 12(10): 1533–1539.<\p>
[16] Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW. Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res, 2006, 6(5): 702–715.<\p>
[17] Török T, Mortimer RK, Romano P, Suzzi G, Polsinelli M. Quest for wine yeasts-An old story revisited. J Ind Micro-biol, 1996, 17(3–4): 303–313.<\p>
[18] Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O'Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ. Population genomics of domestic and wild yeasts. Nature, 2009, 458(7236): 337–341.<\p>
[19] Fay JC, Benavides JA. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet, 2005, 1(1): e5.<\p>
[20] Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Na-kazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishi-mura A, Yoda K, Ishikawa T, Iwashita K, Fujita N, Shi-moi H. Whole-genome sequencing of sake yeast Sac-charomyces cerevisiae Kyokai no. 7. DNA Res, 18(6): 423–434.<\p>
[21] Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ. Whole- genome comparison reveals novel genetic elements that character-ize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet, 7(2): e1001287.<\p>
[22] Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG. Ge-nome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res, 2009, 19(12): 2258–2270.<\p>
[23] Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods, 2012, 9(8): 772.<\p>
[24] Guindon S, Gascuel O. A simple, fast, and accurate algo-rithm to estimate large phylogenies by maximum likeli-hood. Syst Biol, 2003, 52(5): 696–704.<\p>
[25] Librado P, Rozas J. DnaSP v5: a software for comprehen-sive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451–1452.<\p>
[26] 林栲, 李海鹏. DNA水平上检测正选择方法的研究进展. 遗传, 2009, 31(9): 896–902.<\p>
[27] Yang ZH. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24(8): 1586–1591.<\p>
[28] Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function pre-diction. Nat Protoc, 2010, 5(4): 725–738.<\p>
[29] Zhang Y. I-TASSER server for protein 3D structure pre-diction. BMC Bioinformatics, 2008, 9: 40.<\p>
[30] Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L. Comprehensive polymorphism survey elucidates popula-tion structure of Saccharomyces cerevisiae. Nature, 2009, 458(7236): 342–345.<\p>
[31] Hennicke F, Grumbt M, Lermann U, Ueberschaar N, Palige K, Böttcher B, Jacobsen ID, Staib C, Morschhäuser J, Monod M, Hube B, Hertweck C, Staib P. Factors sup-porting cysteine tolerance and sulfite production in Can-dida albicans. Eukaryot Cell, 2013, 12(4): 604–613.<\p>
[32] Grumbt M, Monod M, Yamada T, Hertweck C, Kunert J, Staib P. Keratin degradation by dermatophytes relies on cysteine dioxygenase and a sulfite efflux pump. J Invest Dermatol, 2013, 133(6): 1550–1555.<\p>
[33] Yuasa N, Nakagawa Y, Hayakawa M, Iimura Y. Distribu-tion of the sulfite resistance gene SSU1-R and the varia-tion in its promoter region in wine yeasts. J Biosci Bioeng, 2004, 98(5): 394–397.<\p>
[34] 沈世超, 陈叶福, 王艳, 肖冬光. 亚硫酸盐分泌量提高的啤酒酵母基因工程菌株发酵性能研究. 酿酒科技, 2008, (7): 29–35.<\p>
[35] Chen YH, Hu L, Punta M, Bruni R, Hillerich B, Kloss B, Rost B, Love J, Siegelbaum SA, Hendrickson WA. Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature, 2010, 467(7319): 1074–1080.<\p>
[36] Du QS, Fan XW, Wang CH, Huang RB. A possible CO2 conducting and concentrating mechanism in plant stomata SLAC1 channel. PLoS ONE, 2011, 6(9): e24264.<\p> |