[1] Kleineidam RG, Pesole G, Breukelman HJ, Beintema JJ, Kastelein RA. Inclusion of cetaceans within the order Artiodactyla based on phylogenetic analysis of pancreatic ribonuclease genes. J Mol Evol, 1999, 48(3): 360–368. <\p>
[2] Wheeler TT, Maqbool NJ, Gupta SK. Mapping, phylogenetic and expression analysis of the RNase (RNaseA) locus in cattle. J Mol Evol, 2012, 74(5–6): 237–248. <\p>
[3] Zhang J. Evolution by gene duplication: an update. Trends Ecology Evol, 2003, 18(6): 292–298. <\p>
[4] Ota T, Nei M. Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol, 1994, 11(3): 469–482. <\p>
[5] Makova KD, Li WH. Divergence in the spatial pattern of gene expression between human duplicate genes. Genome Res, 2003, 13(7): 1638–1645. <\p>
[6] Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci, 2012, 279(1749): 5048–5057. <\p>
[7] Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. Gene duplication as a major force in evolution. J Genet, 2013, 92(1): 155–161. <\p>
[8] Beintema JJ, Kleineidam RG. The ribonuclease A superfamily: general discussion. Cell Mol Life Sci, 1998, 54(8): 825–832. <\p>
[9] Cho S, Beintema JJ, Zhang J. The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics, 2005, 85(2): 208–220. <\p>
[10] Goo SM, Cho S. The expansion and functional diversification of the mammalian ribonuclease A superfamily epitomizes the efficiency of multigene families at generating biological novelty. Genome Biol Evol, 2013, 5(11): 2124–2140. <\p>
[11] Barnard EA. Biological function of pancreatic ribonuclease. Nature, 1969, 221(5178): 340–344. <\p>
[12] Strydom DJ, Fett JW, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL. Amino acid sequence of human tumor derived angiogenin. Biochemistry, 1985, 24(20): 5486–5494. <\p>
[13] Harder J, Schroder JM. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem, 2002, 277(48): 46779–46784. <\p>
[14] Zhang J, Dyer KD, Rosenberg HF. Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res, 2003, 31(2): 602–607. <\p>
[15] Zhang J, Dyer KD, Rosenberg HF. RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res, 2002, 30(5): 1169–1175. <\p>
[16] Rosenberg HF. Eosinophil-derived neurotoxin / RNase 2: connecting the past, the present and the future. Curr Pharm Biotechnol, 2008, 9(3): 135–140. <\p>
[17] Rosenberg HF, Ackerman SJ, Tenen DG. Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med, 1989, 170(1): 163–176. <\p>
[18] Sorrentino S. The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett, 2010, 584(11): 2194–2200. <\p>
[19] Gupta SK, Haigh BJ, Griffin FJ, Wheeler TT. The mammalian secreted RNases: mechanisms of action in host defence. Innate Immun, 2013, 19(1): 86–97. <\p>
[20] Dyer KD, Rosenberg HF. The RNase a superfamily: generation of diversity and innate host defense. Mol Divers, 2006, 10(4): 585–597. <\p>
[21] Rosenberg HF. RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol, 2008, 83(5): 1079–1087. <\p>
[22] Pizzo E, D'Alessio G. The success of the RNase scaffold in the advance of biosciences and in evolution. Gene, 2007, 406(1–2): 8–12. <\p>
[23] Jacoby DB. Pathophysiology of airway viral infections. Pulm Pharmacol Ther, 2004, 17(6): 333–336. <\p>
[24] Rosenberg HF, Dyer KD, Domachowske JB. Respiratory viruses and eosinophils: exploring the connections. Antiviral Res, 2009, 83(1): 1–9. <\p>
[25] Wang XY, Li NZ, Yu L, Zhao H, Zhang Y. Duplication and functional diversification of pancreatic ribonuclease (RNASE1) gene. Chinese Sci Bulletin, 2010, 55(1): 2–6. <\p>
[26] Zhang J, Zhang YP, Rosenberg HF. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet, 2002, 30(4): 411–415. <\p>
[27] Zhang J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet, 2006, 38(7): 819–823. <\p>
[28] Zhang J. Phylogenetic evidence for parallel adaptive origins of digestive RNases in Asian and African leaf monkeys: a response to Xu et al. (2009). Mol Phylogenet Evol, 2009, 53(2): 608–609; author reply 610-611. <\p>
[29] Schienman JE, Holt RA, Auerbach MR, Stewart CB. Du-plication and divergence of 2 distinct pancreatic ribonu-clease genes in leaf-eating African and Asian colobine mon-keys. Mol Biol Evol, 2006, 23(8): 1465-1479. <\p>
[30] Xu L, Su Z, Gu Z, Gu X, Evolution of RNases in leaf monkeys: being parallel gene duplications or parallel gene conversions is a problem of molecular phylogeny. Mol Phylogenet Evol, 2009, 50(2): 397-400. <\p>
[31] Yu L, Wang XY, Jin W, Luan PT, Ting N, Zhang YP. Adaptive evolution of digestive RNASE1 genes in leaf-eating monkeys revisited: new insights from ten additional colobines. Mol Biol Evol, 2010, 27(1): 121–131. <\p>
[32] Yu L, Zhang YP, The unusual adaptive expansion of pancreatic ribonuclease gene in carnivora. Mol Biol Evol, 2006, 23(12): 2326–2335. <\p>
[33] Dubois JY, Jekel PA, Mulder PP, Bussink AP, Catzeflis FM, Carsana A, Beintema JJ. Pancreatic-type ribonuclease 1 gene duplications in rat species. J Mol Evol, 2002, 55(5): 522–533. <\p>
[34] Singhania NA, Dyer KD, Zhang J, Deming MS, Bonville CA, Domachowske JB, Rosenberg HF. Rapid evolution of the ribonuclease A superfamily: adaptive expansion of independent gene clusters in rats and mice. J Mol Evol, 1999, 49(6): 721–728. <\p>
[35] Beintema JJ, Schuller C, Irie M, Carsana A. Molecular evolution of the ribonuclease superfamily. Prog Biophys Mol Biol, 1988, 51(3): 165–192. <\p>
[36] Sasso MP, Carsana A, Confalone E, Cosi C, Sorrentino S, Viola M, Palmier M, Russo E, Furia A. Molecular cloning of the gene encoding the bovine brain ribonucelase and its expression in different regions of the brain. Nucleic Acids Res, 1991, 19(23): 6469–6474. <\p>
[37] Watanabe H, Katoh H, Ishii M, Komoda Y, Sanda A, Takizawa Y, Ohgi K, Irie M. Primary structure of a ribonuclease from bovine brain. J Biochem, 1988, 104(6): 939–945. <\p>
[38] Sasso MP, Lombardi M, Confalone E, Carsana A, Palmieri M, Furia A. The differential pattern of tissue-specific expression of ruminant pancreatic type ribonucleases may help to understand the evolutionary history of their genes. Gene, 1999, 227(2): 205–212. <\p>
[39] Zhao W, Confalone E, Breukelman HJ, Sasso MP, Jekel PA, Hodge E, Furia A, Beintema JJ. Ruminant brain ribonucleases: expression and evolution. Biochim Biophys Acta, 2001, 1547(1): 95–103. <\p>
[40] Xu H, Liu Y, Meng F, He B, Han N, Li G, Rossiter SJ, Zhang S. Multiple bursts of pancreatic ribonuclease gene duplication in insect-eating bats. Gene, 2013, 526(2): 112–117. <\p>
[41] Rosenberg HF, Dyer KD, Tiffany HL, Gonzalez M. Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet, 1995, 10(2): 219–223. <\p>
[42] Zhang J, Rosenberg HF, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA, 1998, 95(7): 3708–3713. <\p>
[43] Zhang J, Dyer KD, Rosenberg HF. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc Natl Acad Sci USA, 2000, 97(9): 4701–4706. <\p>
[44] Shapiro R, Riordan JF, Vallee BL. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry, 1986, 25: 3527-3532. <\p>
[45] Lee HS, Lee IS, Kang TC, Jeong GB, Chang SI. Angiogenin is involved in morphological changes and angiogenesis in the ovary. Biochem Biophys Res Commun, 1999, 257: 182–186. <\p>
[46] Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol, 2003, 4(3): 269–273. <\p>
[47] Zhang J, Rosenberg HF. Diversifying selection of the tumor-growth promoter angiogenin in primate evolution. Mol Biol Evol, 2002, 19(4): 438–445. <\p>
[48] Zhang J, Zhang YP. Pseudogenization of the tumor-growth promoter angiogenin in a leaf-eating monkey. Gene, 2003, 308: 95–101. <\p>
[49] Osorio DS, Antunes A, Ramos MJ. Structural and functional implications of positive selection at the primate angiogenin gene. BMC Evol Biol, 2007, 7: 167. <\p>
[50] Strydom DJ. The angiogenins. Cell Mol Life Sci, 1998, 54: 811–824. <\p>
[51] Nobile V, Vallee BL, Shapiro R. Characterization of mouse angiogenin-related protein: implications for functional studies on angiogenin. Proc Natl Acad Sci USA, 1996, 93(9): 4331–4335. <\p>
[52] Brown WE, Nobile V, Subramanian V, Shapiro R. The mouse angiogenin gene family: structures of an angiogenin- related protein gene and two pseudogenes. Genomics, 1995, 29(1): 200–206. <\p>
[53] Codoner FM, Alfonso-Loeches S, Fares MA. Mutational dynamics of murine angiogenin duplicates. BMC Evol Biol, 2010, 10: 310. <\p>
[54] Chan CC, Moser JM, Dyer KD, Percopo CM, Rosenberg HF. Genetic diversity of human RNase 8. BMC Genomics, 2012, 13: 40. <\p>
[55] Cho S, Zhang J. Ancient expansion of the ribonuclease A superfamily revealed by genomic analysis of placental and marsupial mammals. Gene, 2006, 373: 116–125. <\p>
[56] Breukelman HJ, van der Munnik N, Kleineidam RG, Furia A, Beintema JJ. Secretory ribonuclease genes and pseudogenes in true ruminants. Gene, 1998, 212(2): 259–268. <\p>
[57] Zhang J , Rosenberg HF. Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proc Natl Acad Sci USA, 2002, 99(8): 5486–5491. <\p>
[58] Maes P, Damart D, Rommens C, Montreuil J, Spik G, Tartar A. The complete amino acid sequence of bovine milk angiogenin. FEBS Lett, 1988, 241(1–2): 41–45. <\p>
[59] Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science, 2013, 339(6118): 456–460. <\p>
[60] Van den Berg A, Van den Hende-Timmer L, Hofsteenge J, Gaastra W, Beintema JJ. Guinea-pig pancreatic ribonucleases. Isolation, properties, primary structure and glycosidation. Eur J Biochem, 1977, 75(1): 91–100. <\p>
[61] Dubois JY, Ursing BM, Kolkman JA, Beintema JJ. Molecular evolution of mammalian ribonucleases 1. Mol Phylogenet Evol, 2003, 27(3): 453–463. <\p>
[62] Eick GN, Jacobs DS, Matthee CA. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (chiroptera). Mol Biol Evol, 2005, 22(9): 1869–1886.<\p> |