[1] JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell , 1992, 69(6): 905-914. [2] X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature , 1998, 393(6683): 386-389. [3] DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci US A , 2007, 104(49): 19416-19421. [4] X, Bao X, Zhang J, Zhao Y, Cao G, Pan H, Wei L, Wu X. Molecular characteristics of Chinese patients with Rett syndrome. Eur J Med Genet , 2012, 55(12): 677-681. [5] RS, Lane JB, Childers J, Skinner SA, Annese F, Barrish JO, Glaze DG, Macleod P, Percy AK. Longevity in Rett syndrome: analysis of the North American Database. J Pediatr , 2010, 156(1): 135-138. [6] JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol , 2010, 68(6): 944-950. [7] R, Parrini E. Epilepsy in Rett syndrome, and CDKL5-and FOXG1-gene-related encephalopathies. Epilepsia , 2012, 53(12): 2067-2078. [8] MR, Pan H, Bao XH, Zhang YZ, Wu XR. MECP2 and CDKL5 gene mutation analysis in Chinese patients with Rett syndrome. J Hum Genet , 2007, 52(1): 38-47. [9] T, Chelly J. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet , 2006, 7(6): 415-426. [10] M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron , 2007, 56(3): 422-437. [11] E, Longo I, Ottimo F, Speciale C, Sampieri K, Katzaki E, Artuso R, Mencarelli MA, D'Ambrogio T, Vonella G, Zappella M, Hayek G, Battaglia A, Mari F, Renieri A, Ariani F. MECP2 deletions and genotype-phenotype correlation in Rett syndrome. Am J Med Genet A , 2007, 143A(23): 2775-2784. [12] L, De Filippis B, Laviola G. Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav Pharmacol , 2008, 19(5-6): 501-517. [13] P, Ogier M, Brooks-Harris G, Schmid DA, Katz DM, Nelson SB. Pathophysiology of locus ceruleus neurons in a mouse model of Rett syndrome. J Neurosci , 2009, 29(39): 12187-12195. [14] L, Shepherd GM. Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome. Neurobiol Dis , 2010, 38(2): 281-287. [15] G, Hablitz JJ, Pozzo-Miller L. Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging. J Neurophysiol , 2011, 105(4): 1768-1784. [16] B, Soto CJ, Saez M, Abrams A, Walz K, Young JI. Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur J Hum Genet , 2012, 20(1): 69-76. [17] JM, Kim YH, Arnold AP, Schanen NC. Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol , 2007, 501(4): 526-542. [18] PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell , 2010, 37(4): 457-468. [19] N, Lioy DT, Grunseich C, Mandel G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci , 2009, 12(3): 311-317. [20] I, Jin LW. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci , 2010, 30(15): 5346-5356. [21] RP, Nikitina T, Horowitz-Scherer RA, Gierasch LM, Uversky VN, Hite K, Hansen JC, Woodcock CL. Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry , 2010, 49(20): 4395-4410. [22] RP, Horowitz-Scherer RA, Nikitina T, Gierasch LM, Woodcock CL. Rett syndrome-causing mutations in human MeCP2 result in diverse structural changes that impact folding and DNA interactions. J Biol Chem , 2008, 283(29): 20523-20534. [23] G, Conca B, Bergo A, Rusconi L, Zhou Z, Greenberg ME, Landsberger N, Soddu S, Kilstrup-Nielsen C. Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep , 2009, 10(12): 1327-1333. [24] J, Hu K, Chang Q, Wu H, Sherman NE, Martinowich K, Klose RJ, Schanen C, Jaenisch R, Wang W, Sun YE. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci USA , 2009, 106(12): 4882-4887. [25] YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol , 2010, 17(6): 666-672. [26] ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci , 2007, 10(12): 1513-1514. [27] L, Makedonski K, Kaufman Y, Razin A, Shemer R. MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics , 2007, 2(4): 214-222. [28] RP, Horowitz-Scherer RA, Nikitina T, Shlyakhtenko LS, Woodcock CL. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol Cell Biol , 2010, 30(19): 4656-4670. [29] KL, McNae IW, Schmiedeberg L, Klose RJ, Bird AP, Walkinshaw MD. MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol Cell , 2008, 29(4): 525-531. [30] T, Shi X, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Woodcock CL. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol Cell Biol , 2007, 27(3): 864-877. [31] VH, McBryant SJ, Wade PA, Woodcock CL, Hansen JC. Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. J Biol Chem , 2007, 282(20): 15057-15064. [32] PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC. Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem , 2003, 278(34): 32181-32188. [33] D, Fu XD. DNA interaction networks: an information highway for regulated gene expression in the 3-dimentional space of the nucleus. Cell Res , 2009, 19(12): 1316-1319. [34] RE, Rhodes SJ. The role of DNA methylation in regulation of the murine Lhx3 gene. Gene , 2014, 534(2): 272-281. [35] S, McMillan HJ, Doja A, Humphreys P. Adolescent onset cognitive regression and neuropsychiatric symptoms associated with the A140V MECP2 mutation. Dev Med Child Neurol , 2014, 56(1): 91-94. [36] DS, Chuang TP, Chiang MF, Ho CS, Hsiao CD, Huang YW, Wu TY, Wu JY, Chen YT, Chen TC, Li LH. De novo MECP2 duplication derived from paternal germ line result in dysmorphism and developmental delay. Gene , 2014, 533(1): 78-85. [37] M, Wither RG, Colic S, Wu C, Monnier PP, Bardakjian BL, Zhang L, Eubanks JH. Rescue of behavioral and EEG deficits in male and female Mecp2-deficient mice by delayed Mecp2 gene reactivation. Hum Mol Genet , 2014, 23(2): 303-318. [38] CM, Kaufmann WE, Bressler JP. MeCP2 deficiency enhances glutamate release through NF-kappaB signaling in myeloid derived cells. J Neuroimmunol , 2013, 265(1-2): 61-67. [39] Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev , 2009, 89(4): 1379-1412. [40] E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem , 2010, 115(2): 297-313. |