遗传 ›› 2012, Vol. 34 ›› Issue (1): 5-18.doi: 10.3724/SP.J.1005.2012.00005
陈科, 程汉华, 周荣家
收稿日期:
2011-06-03
修回日期:
2011-08-19
出版日期:
2012-01-20
发布日期:
2012-01-25
通讯作者:
周荣家
E-mail:rjzhou@whu.edu.cn
基金资助:
转基因生物新品种培育重大专项(编号:2009ZX08009-148B)资助
CHEN Ke, CHENG Han-Hua, ZHOU Rong-Jia
Received:
2011-06-03
Revised:
2011-08-19
Online:
2012-01-20
Published:
2012-01-25
摘要: 细胞内所有的蛋白质和大多数的细胞外蛋白都在不断的进行更新, 即它们在不断地被降解, 并被新合成的蛋白质取代。细胞内蛋白的降解主要通过两个途径, 即自噬和泛素蛋白酶体系统。自噬是一种由溶酶体介导的细胞内过多或异常蛋白质的降解机制。在细胞内主要有3种类型的自噬, 即分子伴侣介导的自噬、微自噬和巨自噬。泛素蛋白酶体系统是由泛素介导的一种高度复杂的蛋白降解机制, 它参与降解细胞内许多蛋白质并且这个过程具有高度特异性。细胞内蛋白质的降解参与调节许多细胞过程, 包括细胞周期、DNA修复、细胞生长和分化、细胞质量的控制、病原生物的感染反应和细胞凋亡等。许多严重的人类疾病被认为是由于蛋白质降解系统的紊乱而引起的。文章综述了自噬和泛素化途径及其分子机制, 以及蛋白质降解系统紊乱的病理学意义。
陈科,程汉华,周荣家. 自噬与泛素化蛋白降解途径的分子机制及其功能[J]. 遗传, 2012, 34(1): 5-18.
[1] Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol, 2006, 17(7): 1807-1819.[2] Luo H, Wong J, Wong B. Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovasc Res, 2010, 85(2): 347-356.[3] Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med, 2003, 9(3-4): 65-76.[4] Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020): 1032-1036.[5] Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell, 2004, 15(3): 1101-1111.[6] Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ, 2005, 12(Suppl. 2): 1542-1552.[7] Kuma A, Mizushima N. Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol, 2010, 21(7): 683-690.[8] Rabinowitz JD, White E. Autophagy and metabolism. Science, 2010, 330(6009): 1344-1348.[9] Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007, 8(9): 741-752.[10] Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol, 2004, 36(12): 2503-2518.[11] Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell, 2007, 131(6): 1137-1148.[12] Mathew R, Karp CM, Beaudoin B, Vuong N, Chen GH, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E. Autophagy suppresses tumorigenesis through elimination of p62. Cell, 2009, 137(6): 1062-1075.[13] Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell, 2009, 17(1): 87-97.[14] Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 2010, 12(2): 119-131.[15] Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol, 2010, 22(2): 132-139.[16] Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans, 2009, 37(Pt 1): 217-222.[17] Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem, 2001, 276(38): 35243-35246.[18] Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer, 2009, 9(8): 563-575.[19] Liang JY, Shao SH, Xu ZX, Hennessy B, Ding ZY, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, Mills GB. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol, 2007, 9(2): 218-224.[20] Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 2011, 13(2): 132-141.[21] Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011, 331(6016): 456-461.[22] Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev, 2004, 18(23): 2893-2904.[23] Zhang HF, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem, 2008, 283(16): 10892-10903.[24] Feng ZH, Zhang HY, Levine AJ, Jin SK. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA, 2005, 102(23): 8204-8209.[25] Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006, 126(1): 121-134.[26] Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 2008, 134(3): 451-460.[27] Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu CL, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol, 2008, 10(6): 676-687.[28] Meijer AJ, Codogno P. Autophagy: a sweet process in diabetes. Cell Metab, 2008, 8(4): 275-276.[29] Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle, 2007, 6(15): 1837-1849.[30] Perlmutter DH. The role of autophagy in alpha-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy, 2006, 2(4): 258-263.[31] Nixon RA. Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci, 2006, 29(9): 528-535.[32] Kegel KB, Kim M, Sapp E, McIntyre C, Castaño JG, Aronin N, DiFiglia M. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci, 2000, 20(19): 7268-7278.[33] 林芳, 顾振纶, 秦正红. 自噬及其在细胞代谢和疾病中的作用. 生物化学与生物物理进展, 2005, 32(4): 198-205.[34] Fukuda T, Roberts A, Ahearn M, Zaal K, Ralston E, Plotz PH, Raben N. Autophagy and lysosomes in Pompe disease. Autophagy, 2006, 2(4): 318-320.[35] Karantza-Wadsworth V, Patel S, Kravchuk O, Chen GH, Mathew R, Jin SK, White E. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev, 2007, 21(13): 1621-1635.[36] Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen GH, Jin SK, White E. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev, 2007, 21(11): 1367-1381.[37] Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 2006, 8(10): 1124-1132.[38] Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata JI, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura SI, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue ZY, Uchiyama Y, Kominami E, Tanaka K. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 2007, 131(6): 1149-1163.[39] Yang ZJ, Chee CE, Huang SB, Sinicrope F. Autophagy modulation for cancer therapy. Cancer Biol Ther, 2011, 11(2): 169-176.[40] Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 2005, 25(3): 1025-1040.[41] 章晟, 于长明, 殷瑛, 陈薇. 细胞自噬在病原体感染过程中的作用研究进展. 军事医学科学院院刊, 2009, 33(5): 469-473.[42] Espert L, Codogno P, Biard-Piechaczyk M. Involvement of autophagy in viral infections: antiviral function and subversion by viruses. J Mol Med, 2007, 85(8): 811-823.[43] Tallóczy Z, Virgin HWt, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy, 2006, 2(1): 24-29.[44] Jackson WT, Giddings TH Jr., Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol, 2005, 3(5): e156.[45] Schimke RT, Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem, 1970, 39: 929-976.[46] Haider M, Segal HL. Some characteristics of the alanine aminotransferase- and arginase-inactivating system of lysosomes. Arch Biochem Biophys, 1972, 148(1): 228-237.[47] Reinstein E, Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med, 2006, 145(9): 676-684.[48] Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J, 1998, 17(24): 7151-7160.[49] Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002, 82(2): 373-428.[50] Rape M, Jentsch S. Taking a bite: proteasomal protein processing. Nat Cell Biol, 2002, 4(5): E113-E116.[51] Havens CG, Ho A, Yoshioka N, Dowdy SF. Regulation of late G1/S phase transition and APCCdh1 by reactive oxygen species. Mol Cell Biol, 2006, 26(12): 4701-4711.[52] Oh YM, Kwon YE, Kim JM, Bae SJ, Lee BK, Yoo SJ, Chung CH, Deshaies RJ, Seol JH. Chfr is linked to tumour metastasis through the downregulation of HDAC1. Nat Cell Biol, 2009, 11(3): 295-302.[53] Kang DM, Chen J, Wong J, Fang GW. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J Cell Biol, 2002, 156(2): 249-259.[54] Maddika S, Sy SMH, Chen JJ. Functional interaction between Chfr and Kif22 controls genomic stability. J Biol Chem, 2009, 284(19): 12998-13003.[55] Kim JM, Cho EN, Kwon YE, Bae SJ, Kim M, Seol JH. CHFR functions as a ubiquitin ligase for HLTF to regulate its stability and functions. Biochem Biophys Res Commun, 2010, 395(4): 515-520.[56] Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron, 1990, 5(4): 411-419.[57] Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ, 1999, 6(4): 303-313.[58] Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet, 2004, 36(2): 147-150.[59] Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 2006, 5(22): 2592-2601.[60] Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans, 2007, 35(Pt 1): 12-17.[61] Wang J, Maldonado MA. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol, 2006, 3(4): 255-261.[62] Moon J, Parry G, Estelle M. The ubiquitin-proteasome pathway and plant development. Plant Cell, 2004, 16(12): 3181-3195.[63] Dharmasiri S, Estelle M. The role of regulated protein degradation in auxin response. Plant Mol Biol, 2002, 49(3-4): 401-409.[64] Cao XR, Lill NL, Boase N, Shi PP, Croucher DR, Shan HB, Qu J, Sweezer EM, Place T, Kirby PA, Daly RJ, Kumar S, Yang BL. Nedd4 controls animal growth by regulating IGF-1 signaling. Sci Signal, 2008, 1(38): ra5.[65] 李艳凤, 张强, 朱大海. 泛素介导的蛋白质降解与肿瘤发生. 遗传, 2006, 28(12): 1591-1596.[66] van Driest SL, Vasile VC, Ommen SR, Will ML, Tajik AJ, Gersh BJ, Ackerman MJ. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol, 2004, 44(9): 1903-1910.[67] Herrmann J, Ciechanover A, Lerman LO, Lerman A. The ubiquitin-proteasome system in cardiovascular diseases-a hypothesis extended. Cardiovasc Res, 2004, 61(1): 11-21.[68] Bousman CA, Chana G, Glatt SJ, Chandler SD, Lucero GR, Tatro E, May T, Lohr JB, Kremen WS, Tsuang MT, Everall IP. Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples. Am J Med Genet B Neuropsychiatr Genet, 2010, 153B(2): 494-502.[69] Turnbull EL, Rosser MF, Cyr DM. The role of the UPS in cystic fibrosis. BMC Biochem, 2007, 8(Suppl. 1): S11.[70] Carvalho RF, Castan EP, Coelho CA, Lopes FS, Almeida FLA, Michelin A, de Souza RWA, Araújo JP Jr, Cicogna AC, Dal Pai-Silva M. Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy. J Mol Histol, 2010, 41(1): 81-87.[71] Kaelin WG Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer, 2008, 8(11): 865-873.[72] Scheffner M, Whitaker NJ. Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system. Semin Cancer Biol, 2003, 13(1): 59-67.[73] Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol, 2003, 1(3): E83.[74] Esteban MA, Tran MGB, Harten SK, Hill P, Castellanos MC, Chandra A, Raval R, O'Brien TS, Maxwell PH. Regulation of E-cadherin expression by VHL and hypoxia- inducible factor. Cancer Res, 2006, 66(7): 3567-3575.[75] Chène P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer, 2003, 3(2): 102-109.[76] Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 1990, 63(6): 1129-1136.[77] Scheffner M, Takahashi T, Huibregtse JM, Minna JD, Howley PM. Interaction of the human papillomavirus type 16 E6 oncoprotein with wild-type and mutant human p53 proteins. J Virol, 1992, 66(8): 5100-5105.[78] Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron, 2003, 40(2): 427-446.[79] Hattori N, Mizuno Y. Pathogenetic mechanisms of parkin in Parkinson's disease. Lancet, 2004, 364(9435): 722-724.[80] Betarbet R, Sherer TB, Greenamyre JT. Ubiquitin-proteasome system and Parkinson's diseases. Exp Neurol, 2005, 191 (Suppl. 1): S17-S27.[81] Liu YC, Fallon L, Lashuel HA, Liu ZH, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell, 2002, 111(2): 209-218.[82] Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science, 1997, 276(5321): 2045-2047. |
[1] | 王诗铭, 宋晓, 赵雪莹, 陈红岩, 王久存, 吴俊杰, 高志强, 钱吉, 白春学, 李强, 韩宝惠, 卢大儒. 自噬通路基因多态性与晚期非小细胞肺癌含铂化疗疗效的相关性分析[J]. 遗传, 2017, 39(3): 250-262. |
[2] | 曾笑威, 刘翠翠, 韩凝, 边红武, 朱睦元. 植物自噬的调控因子和受体蛋白研究进展[J]. 遗传, 2016, 38(7): 644-650. |
[3] | 王棋文, 靳伟, 常翠芳, 徐存拴. 基于IPA分析自噬对大鼠肝再生中树突状细胞的调节作用[J]. 遗传, 2015, 37(3): 276-282. |
[4] | 王棋文,常翠芳,谷宁宁,潘翠云,徐存拴. 自噬在肝再生中的作用[J]. 遗传, 2015, 37(11): 1116-1124. |
[5] | 陈元渊, 陈红岩, 卢大儒. SNARE蛋白调控细胞自噬的分子机制[J]. 遗传, 2014, 36(6): 547-551. |
[6] | 孙源超, 秦训思, 陈宏, 沈伟. 细胞自噬发生的表观遗传调节[J]. 遗传, 2014, 36(5): 447-455. |
[7] | 王师尧,金巍娜,吴丹. 青少年型神经元蜡样脂褐质沉积病(JNCL)的发病机制[J]. 遗传, 2009, 31(8): 779-784. |
[8] | 李艳凤,张强,朱大海. 泛素介导的蛋白质降解与肿瘤发生[J]. 遗传, 2006, 28(12): 1591-1591~1596. |
[9] | 秘彩莉,刘旭,张学勇. F-box蛋白质在植物生长发育中的功能[J]. 遗传, 2006, 28(10): 1337-1205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: