[1] International Chicken Genome Sequencing Consortium (ICGSC). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 2004, 432(7018): 695-716.[2] Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD. Eukaryotic genome size databases. Nucleic Acids Res, 2007, 35(S1): D332-338.[3] Delany ME, Krupkin AB, Miller MM. Organization of telomere sequences in birds: evidence for arrays of extreme length and for in vivo shortening. Cytogenet Cell Genet, 2000, 90(1-2): 139-145.[4] Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 2007, 448(7157): 1068-1071.[5] Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T. Mammalian telomeres end in a large duplex loop. Cell, 1999, 97(4): 503-514.[6] Nikitina T, Woodcock CL. Closed chromatin loops at the ends of chromosomes. J Cell Biol, 2004, 166(2): 161-165.[7] Wei C, Price CM. Cell cycle localization, dimerization, and binding domain architecture of the telomere protein cPot1. Mol Cell Biol, 2004, 24(5): 2091-2102.[8] Nanda I, Schrama D, Feichtinger W, Haaf T, Schartl M, Schmid M. Distribution of telomeric (TTAGGG)(n) sequences in avian chromosomes. Chromosoma, 2002, 111(4): 215-227.[9] Delany ME, Gessaro TM, Rodrigue KL, Daniels LM. Chromosomal mapping of chicken mega-telomere arrays to GGA9, 16, 28 and W using a cytogenomic approach. Cytogenet Genome Res, 2007, 117(1-4): 54-63.[10] O'Hare TH, Delany ME. Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems. Chromosome Res, 2009, 17(8): 947-964.[11] Rodrigue KL, May BP, Famula TR, Delany ME. Meiotic instability of chicken ultra-long telomeres and mapping of a 2.8 megabase array to the W-sex chromosome. Chromosome Res, 2005, 13(6): 581-591.[12] de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE. Structure and variability of human chromosome ends. Mol Cell Biol, 1990, 10(2): 518-527.[13] Kipling D, Cooke HJ. Hypervariable ultra-long telomeres in mice. Nature, 1990, 347(6291): 400-402.[14] Swanberg SE, O'Hare TH, Robb EA, Robinson CM, Chang H, Delany ME. Telomere biology of the chicken: a model for aging research. Exp Gerontol, 2010, 45(9): 647-654.[15] Starling JA, Maule J, Hastie ND, Allshire RC. Extensive telomere repeat arrays in mouse are hypervariable. Nucleic Acids Res, 1990, 18(23): 6881-6888.[16] de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 2005, 19(18): 2100-2110.[17] De Rycker M, Venkatesan RN, Wei C, Price CM. Vertebrate tankyrase domain structure and sterile alpha motif (SAM)-mediated multimerization. Biochem J, 2003, 372(Pt 1): 87-96.[18] Konrad JP, Mills W, Easty DJ, Farr CJ. Cloning and characterisation of the chicken gene encoding the telomeric protein TRF2. Gene, 1999, 239(1): 81-90.[19] Tan M, Wei C, Price CM. The telomeric protein Rap1 is conserved in vertebrates and is expressed from a bidirectional promoter positioned between the Rap1 and KARS genes. Gene, 2003, 323: 1-10.[20] Bezzubova O, Shinohara A, Mueller RG, Ogawa H, Buerstedde JM. A chicken RAD51 homologue is expressed at high levels in lymphoid and reproductive organs. Nucleic Acids Res, 1993, 21(7): 1577-1580.[21] De Boeck G, Forsyth RG, Praet M, Hogendoorn PCW. Telomere-associated proteins: cross-talk between telomere maintenance and telomere-lengthening mechanisms. J Pathol, 2009, 217(3): 327-344.[22] Orelli BJ, Logsdon-Jr JM Jr, Bishop DK. Nine novel conserved motifs in BRCA1 identified by the chicken ort |