[1] ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146): 799– 816. <\p>
[2] Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642–655. <\p>
[3] Liu HJ, Wang XR, Wang HD, Wu JJ, Ren J, Meng LF, Wu QF, Dong HS, Wu J, Kao TY, Ge Q, Wu ZX, Yuh CH, Shan G. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat Commun, 2012, 3: 1073. <\p>
[4] Yu FY, Yao HR, Zhu P, Zhang XC, Pan QH, Gong C, Huang YJ, Hu XQ, Su FX, Lieberman J, Song E. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131(6): 1109–1123. <\p>
[5] Zhang L, Hou DX, Chen X, Li DH, Zhu LY, Zhang YJ, Li J, Bian Z, Liang XY, Cai X, Yin Y, Wang C, Zhang TF, Zhu DH, Zhang DM, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen JQ, Wang J, Wang M, Zhang QP, Zhang JF, Zen K, Zhang CY. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regu-lation by microRNA. Cell Res, 2012, 22(1): 107–126. <\p>
[6] Zhao S, Gou LT, Zhang M, Zu LD, Hua MM, Hua Y, Shi HJ, Li Y, Li JS, Li DS, Wang ED, Liu MF. piRNA-triggered MIWI ubiquitination and removal by APC/C in late spermatogenesis. Dev Cell, 2013, 24(1): 13–25. <\p>
[7] Wang Y, Chen J, Wei G, He H, Zhu X, Xiao T, Yuan J, Dong B, He S, Skogerb G, Chen R. The Caenorhabditis elegans intermediate-size transcriptome shows high de-gree of stage-specific expression. Nucleic Acids Res, 2011, 39(12): 5203–5214. <\p>
[8] Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235): 223–227. <\p>
[9] Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 2011, 147(7): 1537–1550. <\p>
[10] Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of transla-tional research? Oncogene, 2012, 31(43): 4577–4587. <\p>
[11] Tsai MC, Spitale RC, Chang HY. Long intergenic non-coding RNAs: new links in cancer progression. Cancer Res, 2011, 71(1): 3–7. <\p>
[12] McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg- Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC. A common allele on chromosome 9 associated with coronary heart disease. Science, 2007, 316(5830): 1488– 1491. <\p>
[13] Johnson R. Long non-coding RNAs in Huntington’s dis-ease neurodegeneration. Neurobiol Dis, 2012, 46(2): 245– 254. <\p>
[14] Tan L, Yu JT, Hu N, Tan L. Non-coding RNAs in Alz-heimer’s disease. Mol Neurobiol, 2013, 47(1): 382–393. <\p>
[15] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136 (4): 629–641. <\p>
[16] Du Toit A. Non-coding RNA: RNA stability control by Pol II. Nat Rev Mol Cell Biol, 2013, 14(3): 128. <\p>
[17] Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR. Transcrip-tional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308(5725): 1149–1154. <\p>
[18] Goodrich JA, Kugel JF. Dampening DNA binding: a common mechanism of transcriptional repression for both ncRNAs and protein domains. RNA Biol, 2010, 7(3): 305&ndash |