遗传 ›› 2020, Vol. 42 ›› Issue (6): 556-564.doi: 10.16288/j.yczz.20-017
收稿日期:
2020-01-13
修回日期:
2020-04-27
出版日期:
2020-06-20
发布日期:
2020-05-21
通讯作者:
许建平
E-mail:jianping.xu@syngenta.com
作者简介:
李霞,博士,研究方向:植物遗传转化和植物基因组编辑。E-mail: 46831067@qq.com
Xia Li, Wan Shi, Lizhao Geng, Jianping Xu()
Received:
2020-01-13
Revised:
2020-04-27
Online:
2020-06-20
Published:
2020-05-21
Contact:
Xu Jianping
E-mail:jianping.xu@syngenta.com
摘要:
CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins)系统作为一种重要的基因编辑工具,自诞生以来被广泛应用于作物的性状改良。与CRISPR/Cas DNA载体介导的植物基因组编辑相比,CRISPR/Cas核糖核蛋白(CRISPR/Cas ribonucleoprotein, CRISPR/Cas RNP)介导的植物基因组编辑具有作用迅速、脱靶率低和无外源DNA插入(DNA-free)等优点,因而无需清除CRISPR编辑工具而更容易获得纯合的编辑体。但是,由于植物细胞转化方法和细胞再生技术的限制,不借助筛选标记的辅助将CRISPR/Cas RNP直接导入植物细胞并获得高效基因编辑仍比较困难,直接限制了CRISPR/Cas RNP在植物基因组编辑中的广泛应用。本文系统介绍了CRISPR/Cas RNP 基因组编辑技术的分子作用机理及其优势,并总结了CRISPR/Cas RNP导入植物细胞的方法,最后对CRISPR/Cas RNP在植物基因组编辑中的新应用和新思路进行了展望,以期为进一步改进CRISPR/Cas RNP基因组编辑技术和扩大其在作物改良中的应用提供参考。
李霞, 施皖, 耿立召, 许建平. CRISPR/Cas核糖核蛋白介导的植物基因组编辑[J]. 遗传, 2020, 42(6): 556-564.
Xia Li, Wan Shi, Lizhao Geng, Jianping Xu. Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes[J]. Hereditas(Beijing), 2020, 42(6): 556-564.
表1
利用CRISPR/Cas RNP介导的植物基因组编辑研究"
性状基因 | 细胞类型 | 导入方法 | 编辑工具 | 编辑结果 | 文献来源 |
---|---|---|---|---|---|
油菜素内酯信号途径负调控因子基因(brassinosteroid insensitive 2, BIN2)的同源基因 | 生菜(L. sativa)原生质体Lactuca sativa | PEG | Cas9 | 编辑体占再生植株的46% | [ |
茉莉酸合成途径丙二烯氧化物环化酶基因(allen oxide cyclase, AOC) | 烟草(Nicotiana tabacum L.)原生质体 | PEG | Cas9 | 深度测序编辑频率44% | [ |
光敏色素B基因(phytochrome B, PHYB),油菜素内酯信号途径负调控因子基因(brassinosteroid insensitive 1, BRI1) | 拟南芥(Arabidopsis thaliana L. Heynh.) 原生质体 | PEG | Cas9 | PHYB:深度测序编辑频率16%;BRI1:两条sgRNA同时引导切割,在两个靶点间产生223 bp缺失 | [ |
细胞色素基因P450,DDB1结合WD40蛋白编码基因DWD1 | 水稻(O. sativa cv. Dongjin)原生质体 | PEG | Cas9 | 深度测序编辑频率:19%(P450)和8.4%(DWD1) | [ |
硝酸还原酶基因(nitrate reductase, NR) | 矮牵牛(Petunia × hybrida hort. ex E. Vilm.)原生质体 | PEG | Cas9 | 深度测序编辑频率5.3%~17.8% | [ |
苹果火疫病易感基因DIPM-1,2,4 | 苹果(Malus domestica Borkh. cv. Golden delicious)原生质体 | PEG | Cas9 | 深度测序编辑频率:6.7%(DIPM-1),0.5-3.3%(DIPM-2),2.5-6.9%(DIPM-3) | [ |
葡萄白粉病易感基因(mildew resistance locus O-7, MLO-7) | 葡萄(V. vinifera cv. Chardonnay)原生质体 | PEG | Cas9 | 深度测序编辑频率0.1% | [ |
叶舌发育相关基因(ligulelss1, LIG1),乙酰乳酸合成酶基因(acetolactate synthase 2, ALS2),雄性不育基因MS26、MS45 | 玉米(Z. mays L.)幼胚 | 基因枪加阳离子脂质体 | Cas9 | 编辑体分别占再生植株的4.0%(MS45)、9.7%(LIG1)和2.4%(MS26);两棵植株在ALS2位点发生同源重组介导的氨基酸精准替换 | [ |
籽粒粒重相关基因(grain width 2, TaGW2),籽粒粒长相关基因TaGASR7 | 小麦(T. aestivum cv. Kenong 199和cv. YZ814)幼胚 | 基因枪 | Cas9 | 编辑体分别占总外植体的4%~5%(cv. Kenong 199)和1%~2%(cv. YZ814) | [ |
脂肪酸去饱和酶基因(fatty acid desaturase, FAD)2-1A、FAD2-1B | 大豆(Glycine max L. Merr.)原生质体 | PEG | Cas12a | 深度测序编辑频率:FAD2-1A 0.0%~11.7%,FAD2-1B 0.0%~9.1% | [ |
丙二烯氧化物环化酶基因AOC | 野生烟草(Nicotiana attenuata Torr. ex S.Watson)原生质体 | PEG | Cas12a | 深度测序编辑频率0.08%~0.8% | [ |
类胡萝卜素合成途径八氢番茄红素脱氢酶基因(phytoene desaturase, PDS)和春化作用调控基因(frigida ,FRI) | 卷心菜(Brassica oleracea var. capitata L. f. alba)、大白菜(B. rapa subsp. pekinensis (Lour.) Hanelt ex Mansf.)和油菜(B. napus L. cv. Topaz)原生质体 | PEG | Cas9 | 深度测序编辑频率:卷心菜0.09%~2.25%(FRI)和0.14%~ 1.33% (PDS),大白菜1.15%~ 24.51%(FRI)和3.78%~24.51% (PDS),油菜0% | [ |
结合态淀粉合成酶基因(granule-bound starch synthase, GBSS) | 马铃薯(S. tuberosum cv. Kuras)原生质体 | PEG | Cas9 | 编辑体占再生植株的:1%~9% (化学合成sgRNA)和22%~ 25% (体外转录sgRNA);4条等位基因全部被编辑的植株占再生植株的2%~3% | [ |
红色荧光蛋白报告基因DsRed2,中脉形成和心皮发育调控基因(drooping leaf, DL),籽粒粒形相关基因(grain width 7, GW7),精卵融合调控基因(generative cell specific-1, GCS1) | 水稻(O. sativa cv. Nipponbare)合子 | PEG | Cas9 | 编辑体植株分别占PEG转化合子数的25% (DsRed2)、13.6%~14.3% (DL)、21.4% (GW7)和64% (GCS1) | [ |
八氢番茄红素脱氢酶基因OsPDS | 水稻(O. sativa cv. Nipponbare)幼胚 | 基因枪 | Cas9 | 编辑体占再生植株(经共转化筛选标记筛选)的33.8% | [ |
八氢番茄红素脱氢酶基因OsPDS | 水稻(O. sativa cv. Nipponbare)幼胚 | 基因枪 | Cas9和Cas12a | 编辑体分别占再生植株(经共转化筛选标记筛选)的3.6%(野生型Cas9)、8.8% (HiFi Cas9)、0.0% (AsCas12a)和23.8% (LbCas12a) | [ |
橙色荧光蛋白报告基因pporRFP | 烟草(N. tabacum cv. Bright Yellow-2)BY-2悬浮细胞系 | 阳离子脂质体和基因枪 | Cas9 | 编辑体占随机挑选细胞团的6% (阳离子脂质体)和3% (基因枪) | [ |
[1] | Liu PF, Wu Q . Probing 3D genome by CRISPR/Cas9. Hereditas(Beijing), 2020,42(1):18-31. |
刘沛峰, 吴强 . CRISPR/Cas9基因编辑在三维基因组研究中的应用. 遗传, 2020,42(1):18-31. | |
[2] | Voytas DF, Gao CX . Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol, 2014,12(6):e1001877. |
[3] | Jones HD . Regulatory uncertainty over genome editing. Nat Plants, 2015,1:14011. |
[4] | Chen K, Wang Y, Zhang R, Zhang H, Gao C . CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol, 2019,70:667-697. |
[5] | Metje-Sprink J, Menz J, Modrzejewski D, Sprink T . DNA-free genome editing: past, present and future. Front Plant Sci, 2018,9:1957. |
[6] | Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS . DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol, 2015,33(11):1162-1164. |
[7] | Modzelewski AJ, Chen S, Willis BJ, Lloyd KCK, Wood JA, He L . Efficient mouse genome engineering by CRISPR- EZ technology. Nat Protoc, 2018,13(6):1253-1274. |
[8] | Banakar R, Eggenberger AL, Lee K, Wright DA, Murugan K, Zarecor S, Lawrence-Dill CJ, Sashital DG, Wang K . High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Sci Rep, 2019,9(1):19902. |
[9] | Koonin EV, Makarova KS . CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep, 2009,1:95. |
[10] | Shan QW, Gao CX . Research progress of genome editing and derivative technologies in plants. Hereditas(Beijing), 2015,37(10):953-973. |
单奇伟, 高彩霞 . 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015,37(10):953-973. | |
[11] | Gasiunas G, Barrangou R, Horvath P, Siksnys V . Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA, 2012,109(39):E2579-2586. |
[12] | Adli M . The CRISPR tool kit for genome editing and beyond. Nat Commun, 2018,9(1):1911. |
[13] | Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. |
[14] | Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015,163(3):759-771. |
[15] | Tang LC, Gu F . Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM. Hereditas (Beijing), 2020,42(3):236-249. |
唐连超, 谷峰 . CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM. 遗传, 2020,42(3):236-249. | |
[16] | Makarova KS, Zhang F, Koonin EV. SnapShot: Class 2 CRISPR-Cas Systems. Cell, 2017,168(1-2): 328-328.e321. |
[17] | Yao RL, Liu D, Jia X, Zheng Y, Liu W, Xiao Y . CRISPR- Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol, 2018,3(3):135-149. |
[18] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821. |
[19] | Li J, Zhang Y, Chen KL, Shan QW, Wang YP, Liang Z, Gao CX . CRISPR/Cas: a novel way of RNA-guided genome editing. Hereditas(Beijing), 2013,35(11):1265-1273. |
李君, 张毅, 陈坤玲, 单奇伟, 王延鹏, 梁振, 高彩霞 . CRISPR/Cas系统:RNA靶向的基因组定向编辑新技术. 遗传, 2013,35(11):1265-1273. | |
[20] | Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA . DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014,507(7490):62-67. |
[21] | Li SY, Li JY, He YB, Xu ML, Zhang JH, Du WM, Zhao YD, Xia LQ . Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol, 2019,37(4):445-450. |
[22] | Li B, Rui HP, Li YJ, Wang QQ, Alariqi M, Qin L, Sun L, Ding X, Wang FQ, Zou JW, Wang YQ, Yuan DJ, Zhang XL, Jin SX . Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnol J, 2019,17(10):1862-1864. |
[23] | Malzahn AA, Tang X, Lee K, Ren QR, Sretenovic S, Zhang YX, Chen HQ, Kang M, Bao Y, Zheng XL, Deng KJ, Zhang T, Salcedo V, Wang K, Zhang Y, Qi YP . Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol, 2019,17(1):9. |
[24] | Tu M, Lin L, Cheng Y, He X, Sun H, Xie H, Fu J, Liu C, Li J, Chen D, Xi H, Xue D, Liu Q, Zhao J, Gao C, Song Z, Qu J, Gu F . A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res, 2017,45(19):11295-11304. |
[25] | Tu ZC, Yang WL, Yan S, Yin A, Gao JQ, Liu XD, Zheng YH, Zheng JZ, Li ZJ, Yang S, Li SH, Guo XY, Li XJ . Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep, 2017,7:42081. |
[26] | Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A . Genome editing in maize directed by CRISPR- Cas9 ribonucleoprotein complexes. Nat Commun, 2016,7:13274. |
[27] | Burger A, Lindsay H, Felker A, Hess C, Anders C, Chiavacci E, Zaugg J, Weber LM, Catena R, Jinek M, Robinson MD, Mosimann C . Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development, 2016,143(11):2025-2037. |
[28] | Gorbunova V, Levy AA . Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res, 1997,25(22):4650-4657. |
[29] | Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li XH, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF . High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA, 2010,107(26):12028-12033. |
[30] | Liang Z, Chen KL, Li TD, Zhang Y, Wang YP, Zhao Q, Liu JX, Zhang HW, Liu CM, Ran YD, Gao CX . Efficient DNA-free genome editing of bread wheat using CRISPR/ Cas9 ribonucleoprotein complexes. Nat Commun, 2017,8:14261. |
[31] | Banakar R, Schubert M, Collingwood M, Vakulskas C, Eggenberger AL, Wang K . Comparison of CRISPR-Cas9/ Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice phytoene desaturase (OsPDS) gene. Rice (NY), 2020,13(1):4. |
[32] | Cho SW, Lee J, Carroll D, Kim JS, Lee J . Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics, 2013,195(3):1177-1180. |
[33] | Kim S, Kim D, Cho SW, Kim J, Kim JS . Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res, 2014,24(6):1012-1019. |
[34] | McCarty NS, Graham AE, Studená L, Ledesma-Amaro R . Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun, 2020,11(1):1281. |
[35] | Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR . Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol, 2015,33(1):73-80. |
[36] | Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD . Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol, 2015,208:44-53. |
[37] | Lin S, Staahl BT, Alla RK, Doudna JA . Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife , 2014,3:e04766. |
[38] | Mout R, Ray M, Yesilbag Tonga G, Lee YW, Tay T, Sasaki K, Rotello VM . Direct cytosolic delivery of CRISPR/Cas9- ribonucleoprotein for efficient gene editing. ACS Nano, 2017,11(3):2452-2458. |
[39] | Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, Kim JS, Bae S, Lee GJ . Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep, 2016,35(7):1535-1544. |
[40] | Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C . DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci, 2016,7:1904. |
[41] | Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG . CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun, 2017,8:14406. |
[42] | Murovec J, Guček K, Bohanec B, Avbelj M, Jerala R . DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci, 2018,9:1594. |
[43] | Andersson M, Turesson H, Olsson N, Falt AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P . Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant, 2018,164(4):378-384. |
[44] | Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J . Progress in plant protoplast research. Planta, 2013,238(6):991-1003. |
[45] | Zhang Y, Liang Z, Zong Y, Wang YP, Liu JX, Chen KL, Qiu JL, Gao CX . Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/ Cas9 DNA or RNA. Nat Commun, 2016,7:12617. |
[46] | Toda E, Koiso N, Takebayashi A, Ichikawa M, Kiba T, Osakabe K, Osakabe Y, Sakakibara H, Kato N, Okamoto T . An efficient DNA- and selectable-marker-free genome- editing system using zygotes in rice. Nat Plants, 2019,5(4):363-368. |
[47] | Liang Z, Chen KL, Zhang Y, Liu JX, Yin KQ, Qiu JL, Gao CX . Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc, 2018,13(3):413-430. |
[48] | Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang JP, Ondzighi-Assoume CA, Montgomery GA, Burris KP, Mazarei M, Chesnut JD, Stewart CN ,Jr. Lipofection- mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep, 2020,39(2):245-257. |
[49] | Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas CF . Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One, 2014,9(1):e85755. |
[50] | Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H . Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res, 2014,24(6):1020-1027. |
[51] | Zorko M, Langel U . Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev, 2005,57(4):529-545. |
[52] | Chugh A, Amundsen E, Eudes F . Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep, 2009,28(5):801-810. |
[53] | Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP . Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol, 2018,36(9):882-897. |
[54] | Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ, Staskawicz B, Landry MP . High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol, 2019,14(5):456-464. |
[55] | Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M, Edge ASB, Liu DR . Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun, 2017,8:15790. |
[56] | Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR . In vivo base editing of post-mitotic sensory cells. Nat Commun, 2018,9(1):2184. |
[57] | Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH . Chemically modified guide RNAs enhance CRISPR- Cas genome editing in human primary cells. Nat Biotechnol, 2015,33(9):985-989. |
[58] | Liu P, Luk K, Shin M, Idrizi F, Kwok S, Roscoe B, Mintzer E, Suresh S, Morrison K, Frazão JB, Bolukbasi MF, Ponnienselvan K, Luban J, Zhu LJ, Lawson ND, Wolfe SA . Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res, 2019,47(8):4169-4180. |
[59] | Zhang L, Vakulskas CA, Bode NM, Collingwood MA, Beltz KR, Behlke MA . Novel mutations that enhance the DNA cleavage activity of Acidaminococcus sp. Cpf1. WO 2020/033774 A1,World Intellectual Property Organization, 2020. |
[60] | Serif M, Dubois G, Finoux AL, Teste MA, Jallet D, Daboussi F . One-step generation of multiple gene knock- outs in the diatom Phaeodactylum tricornutum by DNA- free genome editing. Nat Commun, 2018,9(1):3924. |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[3] | 刘丹妮, 武海萍, 周国华. 可视化分析在病原体核酸现场快速检测中的研究进展[J]. 遗传, 2023, 45(4): 306-323. |
[4] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
[5] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[6] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[7] | 张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[8] | 刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[9] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[10] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[11] | 杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[12] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[13] | 王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[14] | 李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[15] | 陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: