遗传 ›› 2025, Vol. 47 ›› Issue (6): 616-624.doi: 10.16288/j.yczz.24-283
罗昊玉1,2,3(), 闫晓红1,2,3, 牟芳1,2,3, 王宁1,2,3(
)
收稿日期:
2024-09-27
修回日期:
2025-02-20
出版日期:
2025-06-20
发布日期:
2025-02-25
通讯作者:
王宁,博士,教授,研究方向:动物遗传育种与繁殖。E-mail: wangning@neau.edu.cn作者简介:
罗昊玉,硕士研究生,专业方向:动物遗传育种与繁殖。E-mail: luohaoyu@neau.edu.cn
基金资助:
Haoyu Luo1,2,3(), Xiaohong Yan1,2,3, Fang Mu1,2,3, Ning Wang1,2,3(
)
Received:
2024-09-27
Revised:
2025-02-20
Published:
2025-06-20
Online:
2025-02-25
Supported by:
摘要:
3′非翻译区(3′ untranslated regions,3′UTR)是真核生物mRNA的组成部分之一,位于其3′最末端。3′UTR在真核生物基因表达的转录后调控中发挥重要作用,目前已知3′UTR调控mRNA的加尾、稳定性、翻译效率及定位等。近年来,随着研究的深入及多种组学技术的出现和使用,人们发现3′UTR还具有许多意想不到的功能。本文综述了近年来真核生物3′UTR的新功能及其作用机制的研究进展,并提出了未来3′UTR的研究方向,以期为全面深入地研究真核生物基因功能及调控提供参考和借鉴。
罗昊玉, 闫晓红, 牟芳, 王宁. 真核生物mRNA 3′非翻译区最新研究进展[J]. 遗传, 2025, 47(6): 616-624.
Haoyu Luo, Xiaohong Yan, Fang Mu, Ning Wang. Recent advances in the study of 3′ untranslated regions of eukaryotic mRNAs[J]. Hereditas(Beijing), 2025, 47(6): 616-624.
[1] |
Theil K, Herzog M, Rajewsky N. Post-transcriptional regulation by 3′UTRs can be masked by regulatory elements in 5′UTRs. Cell Rep, 2018, 22(12): 3217-3226.
pmid: 29562178 |
[2] |
Mayr C. Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol, 2016, 26(3): 227-237.
pmid: 26597575 |
[3] |
Mayr C. What are 3′UTRs doing? Cold Spring Harb Perspect Biol, 2019, 11(10): a034728.
pmid: 30181377 |
[4] |
Wu QS, Wright M, Gogol MM, Bradford WD, Zhang N, Bazzini AA. Translation of small downstream ORFs enhances translation of canonical main open reading frames. EMBO J, 2020, 39(17): e104763.
pmid: 32744758 |
[5] |
Cottrell KA, Chaudhari HG, Cohen BA, Djuranovic S. PTRE-seq reveals mechanism and interactions of RNA binding proteins and miRNAs. Nat Commun, 2018, 9(1): 301.
pmid: 29352242 |
[6] |
Kakumani PK. AGO-RBP crosstalk on target mRNAs: implications in miRNA-guided gene silencing and cancer. Transl Oncol, 2022, 21: 101434.
pmid: 35477066 |
[7] |
Hong D, Jeong S. 3′UTR diversity: expanding repertoire of RNA alterations in human mRNAs. Mol Cells, 2023, 46(1): 48-56.
pmid: 36697237 |
[8] |
Mayr C. Regulation by 3′-untranslated regions. Annu Rev Genet, 2017, 51: 171-194.
pmid: 28853924 |
[9] |
Lee SH, Mayr C. Gain of additional BIRC3 protein functions through 3′-UTR-mediated protein complex formation. Mol Cell, 2019, 74(4): 701-712.e9.
pmid: 30948266 |
[10] |
Berkovits BD, Mayr C. Alternative 3′UTRs act as scaffolds to regulate membrane protein localization. Nature, 2015, 522(7556): 363-367.
pmid: 25896326 |
[11] |
Mayr C. 3′UTRs regulate protein functions by providing a nurturing niche during protein synthesis. Cold Spring Harb Symp Quant Biol, 2019, 84: 95-104.
pmid: 31900325 |
[12] |
Ribeiro DM, Prod'homme A, Teixeira A, Zanzoni A, Brun C. The role of 3′UTR-protein complexes in the regulation of protein multifunctionality and subcellular localization. Nucleic Acids Res, 2020, 48(12): 6491-6502.
pmid: 32484544 |
[13] |
Mercer TR, Wilhelm D, Dinger ME, Soldà G, Korbie DJ, Glazov EA, Truong V, Schwenke M, Simons C, Matthaei KI, Saint R, Koopman P, Mattick JS. Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res, 2011, 39(6): 2393-403.
pmid: 21075793 |
[14] |
Kocabas A, Duarte T, Kumar S, Hynes MA. Widespread differential expression of coding region and 3′UTR sequences in neurons and other tissues. Neuron, 2015, 88(6): 1149-1156.
pmid: 26687222 |
[15] |
Ji SY, Yang Z, Gozali L, Kenney T, Kocabas A, Jinsook Park C, Hynes M. Distinct expression of select and transcriptome-wide isolated 3′UTRs suggests critical roles in development and transition states. PLoS One, 2021, 16(5): e0250669.
pmid: 33951080 |
[16] |
Bae B, Miura P. Emerging roles for 3′UTRs in neurons. Int J Mol Sci, 2020, 21(10): 3413.
pmid: 32408514 |
[17] |
Jenny A, Hachet O, Závorszky P, Cyrklaff A, Weston MDJ, Johnston DS, Erdélyi M, Ephrussi A. A translation- independent role of oskar RNA in early Drosophila oogenesis. Development, 2006, 133(15): 2827-33.
pmid: 16835436 |
[18] |
Wang Y, Sun DQ, Liu DG. Tumor suppression by RNA from C/EBPβ 3′UTR through the inhibition of protein kinase Cε activity. PLoS One, 2011, 6(1): e16543.
pmid: 21283634 |
[19] |
Malka Y, Steiman-Shimony A, Rosenthal E, Argaman L, Cohen-Daniel L, Arbib E, Margalit H, Kaplan T, Berger M. Post-transcriptional 3′-UTR cleavage of mRNA transcripts generates thousands of stable uncapped autonomous RNA fragments. Nat Commun, 2017, 8(1): 2029.
pmid: 29229900 |
[20] |
Tang P, Yang Y, Li GN, Huang L, Wen MM, Ruan W, Guo XL, Zhang C, Zuo XX, Luo DJ, Xu YZ, Fu XD, Zhou Y. Alternative polyadenylation by sequential activation of distal and proximal PolyA sites. Nat Struct Mol Biol, 2022, 29(1): 21-31.
pmid: 35013598 |
[21] |
Malka Y, Alkan F, Ju S, Körner PR, Pataskar A, Shulman E, Loayza-Puch F, Champagne J, Wenzel C, Faller WJ, Elkon R, Lee C, Agami R. Alternative cleavage and polyadenylation generates downstream uncapped RNA isoforms with translation potential. Mol Cell, 2022, 82(20): 3840-3855.e8.
pmid: 36270248 |
[22] |
Andreassi C, Luisier R, Crerar H, Darsinou M, Blokzijl- Franke S, Lenn T, Luscombe NM, Cuda G, Gaspari M, Saiardi A, Riccio A. Cytoplasmic cleavage of IMPA1 3′UTR is necessary for maintaining axon integrity. Cell Rep, 2021, 34(8): 108778.
pmid: 33626357 |
[23] |
Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004, 304(5670): 594-596.
pmid: 15105502 |
[24] |
Sapkota S, Pillman KA, Dredge BK, Liu DW, Bracken JM, Kachooei SA, Chereda B, Gregory PA, Bracken CP, Goodall GJ. On the rules of engagement for microRNAs targeting protein coding regions. Nucleic Acids Res, 2023, 51(18): 9938-9951.
pmid: 37522357 |
[25] |
Sudmant PH, Lee H, Dominguez D, Heiman M, Burge CB. Widespread accumulation of ribosome-associated isolated 3′UTRs in neuronal cell populations of the aging brain. Cell Rep, 2018, 25(9): 2447-2456.e4.
pmid: 30485811 |
[26] |
Trinklein ND, Karaöz U, Wu JQ, Halees A, Force Aldred S, Collins PJ, Zheng DY, Zhang ZDD, Gerstein MB, Snyder M, Myers RM, Weng ZP. Integrated analysis of experimental data sets reveals many novel promoters in 1% of the human genome. Genome Res, 2007, 17(6): 720-731.
pmid: 17567992 |
[27] |
Manjunath LE, Singh A, Som S, Eswarappa SM. Mammalian proteome expansion by stop codon readthrough. Wiley Interdiscip Rev RNA, 2023, 14(2): e1739.
pmid: 35570338 |
[28] |
Manjunath LE, Singh A, Sahoo S, Mishra A, Padmarajan J, Basavaraju CG, Eswarappa SM. Stop codon read-through of mammalian MTCH2 leading to an unstable isoform regulates mitochondrial membrane potential. J Biol Chem, 2020, 295(50): 17009-17026.
pmid: 33028634 |
[29] |
Preussner M, Gao QS, Morrison E, Herdt O, Finkernagel F, Schumann M, Krause E, Freund C, Chen W, Heyd F. Splicing-accessible coding 3′UTRs control protein stability and interaction networks. Genome Biol, 2020, 21(1): 186.
pmid: 32727563 |
[30] |
Mackowiak SD, Zauber H, Bielow C, Thiel D, Kutz K, Calviello L, Mastrobuoni G, Rajewsky N, Kempa S, Selbach M, Obermayer B. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol, 2015, 16: 179.
pmid: 26364619 |
[31] |
Schlesinger D, Elsässer SJ. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. FEBS J, 2022, 289(1): 53-74.
pmid: 33595896 |
[32] |
Yang HW, Li QR, Stroup EK, Wang S, Ji Z. Widespread stable noncanonical peptides identified by integrated analyses of ribosome profiling and ORF features. Nat Commun, 2024, 15(1): 1932.
pmid: 38431639 |
[33] |
Dodbele S, Wilusz JE. Ending on a high note: downstream ORFs enhance mRNA translational output. EMBO J, 2020, 39(17): e105959.
pmid: 32744723 |
[34] |
Nobuta R, Machida K, Sato M, Hashimoto S, Toriumi Y, Nakajima S, Suto D, Imataka H, Inada T. eIF4G-driven translation initiation of downstream ORFs in mammalian cells. Nucleic Acids Res, 2020, 48(18): 10441-10455.
pmid: 32941651 |
[35] |
Kong S, Tao M, Shen XJ, Ju SQ. Translatable circRNAs and lncRNAs: driving mechanisms and functions of their translation products. Cancer Lett, 2020, 483: 59-65.
pmid: 32360179 |
[36] |
Wright BW, Yi ZX, Weissman JS, Chen J. The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol, 2022, 32(3): 243-258.
pmid: 34844857 |
[37] |
Valluy J, Bicker S, Aksoy-Aksel A, Lackinger M, Sumer S, Fiore R, Wüst T, Seffer D, Metge F, Dieterich C, Wöhr M, Schwarting R, Schratt G. A coding-independent function of an alternative Ube3a transcript during neuronal development. Nat Neurosci, 2015, 18(5): 666-673.
pmid: 25867122 |
[38] |
Crerar H, Scott-Solomon E, Bodkin-Clarke C, Andreassi C, Hazbon M, Logie E, Cano-Jaimez M, Gaspari M, Kuruvilla R, Riccio A. Regulation of NGF signaling by an axonal untranslated mRNA. Neuron, 2019, 102(3): 553-563.e8.
pmid: 30853298 |
[39] |
Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang XN, Darnell JC, Darnell RB. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 2008, 456(7221): 464-469.
pmid: 18978773 |
[40] |
Zhang ZP, So K, Peterson R, Bauer M, Ng H, Zhang Y, Kim JH, Kidd T, Miura P. Elav-mediated exon skipping and alternative polyadenylation of the Dscam1 gene are required for axon outgrowth. Cell Rep, 2019, 27(13): 3808-3817.
pmid: 31242415 |
[1] | 张祖铭, 周豪, 黄学治, 张多悦, 张佳怡, 林昱, 方立崴, 张秀昌, 崔玉军, 武雅蓉, 李艳君. 基于多类型变异的炭疽芽孢杆菌群体基因组学研究[J]. 遗传, 2025, 47(6): 681-693. |
[2] | 闫家通, 陈冠玮, 缪青梅, 彭城, 杨蕾, 陈笑芸, 徐晓丽, 魏巍, 徐俊锋, 汪小福. 基于重组酶聚合酶扩增的转基因玉米和大豆现场快速检测方法[J]. 遗传, 2025, 47(6): 694-707. |
[3] | 王占春, 钟桂涛, 张贝贝, 谢怡琳, 唐定中, 王伟. 水稻稻瘟病抗性基因研究进展[J]. 遗传, 2025, 47(5): 533-545. |
[4] | 权静, 肖艳群, 卢大儒, 鲍芸. 基因组光学图谱技术在疾病诊断中的应用与研究[J]. 遗传, 2025, 47(4): 428-436. |
[5] | 陈敏, 韩娜, 缪玉, 强裕俊, 张雯, 刘蓬勃, 刘起勇, 栗冬梅. 物种分化因素影响下的巴尔通体差异转录组分析[J]. 遗传, 2025, 47(3): 366-381. |
[6] | 郑琪, 赵李, 李滨, 李宏伟, 吉万全, 张学勇. 中国小麦远缘杂交与染色体工程育种的理论与实践[J]. 遗传, 2025, 47(3): 289-299. |
[7] | 卢宇蓝, 李国壮, 王雅琼, 徐可欣, 董欣然, 蔡继昊, 吴冰冰, 王慧君, 方萍, 王剑, 王华, 孙路明, 叶勇裕, 李晴, 刘雅萍, 刘丽, 刘宁, 刘嘉琦, 宋昉, 杨琳, 邱正庆, 陈泽夫, 罗华夏, 郭丹, 郝婵娟, 赵森, 黄尚志, 彭镜, 蔡小强, 睢瑞芳, 李林康, 吴南, 周文浩, 张抒扬. 临床基因组测序解读与报告专家共识[J]. 遗传, 2025, 47(3): 314-328. |
[8] | 倪嘉欣, 张蔚. 蝶翅花纹的演化发育生物学研究进展[J]. 遗传, 2025, 47(2): 258-270. |
[9] | 张力, 李川昀. 从基因演化到细胞类型演化的理论思考[J]. 遗传, 2025, 47(2): 172-182. |
[10] | 沈洁宇, 苏天晗, 余大奇, 谭生军, 张勇. 基因重复驱动的演化:基因组学时代的回顾与展望[J]. 遗传, 2025, 47(2): 147-171. |
[11] | 吴宏, 章誉兴, 于黎. 动物物种形成研究进展[J]. 遗传, 2025, 47(1): 58-70. |
[12] | 王则夫, 刘建全. 基因组时代的物种形成研究[J]. 遗传, 2025, 47(1): 71-100. |
[13] | 张达轩, 戴沈汝, 崔银秋. 古基因组视角下的亚洲北部人群迁徙和演化机制[J]. 遗传, 2025, 47(1): 34-45. |
[14] | 平婉菁, 薛家旸, 付巧妹. 古DNA解析东亚南北方人群的迁徙与演化历史[J]. 遗传, 2025, 47(1): 18-33. |
[15] | 梅利斌, 张译元, 黄娴静, 纪红, 邱乒乒, 丁露, 何雪梅, 李萍. 一例手足裂畸形6型家系的致病变异鉴定及胚胎植入前遗传学检测[J]. 遗传, 2024, 46(9): 750-756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: