遗传

• 研究报告 •    

基于多类型变异的炭疽芽孢杆菌群体基因组学研究

张祖铭1,周豪2,黄学治2,张多悦2,张佳怡2,林昱2,方立崴2,张秀昌1,崔玉军2,武雅蓉2,李艳君3   

  1. 1.     河北北方学院,张家口 075000

    2.     军事科学院军事医学研究院,北京100071

    3.     解放军总医院第六医学中心,北京100048


  • 收稿日期:2024-10-16 修回日期:2024-12-18 出版日期:2025-01-10 发布日期:2025-01-10

Study on population genomics of Bacillus anthracis based on multiple types of genetic variations

Zuming Zhang1, Hao Zhou2, Xuezhi Huang2, Duoyue Zhang2, Jiayi Zhang2, Yu Lin2, Liwei Fang2, Xiuchang Zhang1, Yujun Cui2, Yarong Wu2, Yanjun Li3   

  1. 1.Hebei North University, Zhangjiakou 075000, China

    2.State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China

    3.Department of Clinical Laboratory Medicine, The Sixth Medical center of People’s Liberation Army (PLA) General Hospital of Beijing, Beijing 100048, China

  • Received:2024-10-16 Revised:2024-12-18 Published:2025-01-10 Online:2025-01-10

摘要: 炭疽芽孢杆菌(Bacillus anthracis)是引发烈性传染病炭疽的病原体,也是一种典型生物战剂,主要感染牛、羊等牲畜以及人类,对畜牧业造成严重经济损失,威胁人类社会安全。深入了解该物种遗传多样性和进化推动力,是研究毒力机制、开展炭疽疫情监测与防控的必要基础。但是,目前该领域研究不足,尤其缺乏基于多种类型变异的群体基因组水平研究。我们对公开发表的1628株炭疽芽孢杆菌基因组序列进行收集和过滤,在1347株高质量序列中鉴定了SNP、Indel、大片段获得缺失、拷贝数变异以及基因组重排等多类型变异,共发现26635个SNP位点、9997个Indel位点、21个大片段获得缺失事件、25个拷贝数变异以及5个倒位。系统发育重建表明,该物种可分为6个主要种群及17个亚群。综合种群多样性和地理分布特征发现,美国菌株遗传多样性最高,而非洲菌株则呈现明显的地理聚集性特征。此外,通过选择压力信号分析,我们发现四个与耐药和芽孢形成相关的基因存在强选择压力。本研究重建了全球炭疽芽孢杆菌的种群结构,并揭示了该物种进化过程中关键的变异位点,为炭疽芽孢杆菌识别、溯源和致病机制研究提供了靶标,同时可为炭疽疫情的预防和控制提供科学支撑。

关键词: 炭疽芽孢杆菌, 全基因组测序, 遗传变异, 种群结构, 选择压力, 进化动力学

Abstract: Bacillus anthracis, the causative agent of the deadly infectious disease anthrax, is also a typical biological warfare agent. It primarily infects livestock such as cattle and sheep, as well as humans, causing significant economic losses to the livestock industry and posing a threat to human society. A more profound insight into the genetic diversity and evolutionary drivers of this species is essential for studying its virulence mechanisms and conducting anthrax surveillance and control. However, current research in this area is insufficient, particularly lacking population genomic studies based on multiple types of genetic variation. We collected and filtered the genome sequences of 1,628 publicly available B. anthracis strains, identifying various types of variation in 1,347 high-quality sequences, including SNPs, indels, large fragment gains and losses, copy number variations (CNVs), and genome rearrangements. In total, we identified 26,635 SNPs, 9,997 indels, 21 large fragment gains and losses, 25 CNVs, and 5 inversions. Phylogenetic reconstruction revealed that this species can be divided into six major populations and 17 subgroups. By integrating population diversity and geographic distribution characteristics, we found that U.S. strains exhibited the highest genetic diversity, while African strains showed significant geographic clustering. Additionally, through selection pressure analysis, we identified strong selection signals in four genes related to drug resistance and sporulation. This study reconstructs the global population structure of B. anthracis and reveals key variations during the species’ evolutionary process, providing targets for anthrax strain identification, tracing, and virulence mechanism research, as well as scientific support for the prevention and control of anthrax outbreaks.

Key words: Bacillus anthracis, whole-genome sequencing, genetic variation, population structure, evolutionary pressure, evolutionary dynamics