遗传 ›› 2025, Vol. 47 ›› Issue (3): 366-381.doi: 10.16288/j.yczz.24-201
陈敏(), 韩娜, 缪玉, 强裕俊, 张雯, 刘蓬勃, 刘起勇, 栗冬梅(
)
收稿日期:
2024-07-01
修回日期:
2024-09-18
出版日期:
2025-03-20
发布日期:
2024-09-25
通讯作者:
栗冬梅,博士,研究员,研究方向:细菌分类与进化。E-mail: lidongmei@icdc.cn作者简介:
陈敏,硕士研究生,专业方向:病原生物学。E-mail: cm593691225@163.com
基金资助:
Min Chen(), Na Han, Yu Miao, Yujun Qiang, Wen Zhang, Pengbo Liu, Qiyong Liu, Dongmei Li(
)
Received:
2024-07-01
Revised:
2024-09-18
Published:
2025-03-20
Online:
2024-09-25
Supported by:
摘要:
为揭示不同种和不同宿主来源的巴尔通体(Bartonella spp.)转录水平差异及其对进化关系的影响,本研究以来自4种巴尔通体种(汉赛巴尔通体、科勒巴尔通体、克氏巴尔通体和五日热巴尔通体)和3种宿主(家猫、猕猴和人)的共27株巴尔通体菌株为研究对象,利用Illumina高通量测序技术进行转录组测序,分析不同种和不同宿主来源菌株间的基因表达差异,并比较转录组与基因组水平的系统发育分析结果的异同。结果表明,不同种和不同宿主来源的巴尔通体菌株间的基因转录水平存在明显差异,并筛选到12个可能与宿主特异性识别相关的基因(virB10、bepC和virB4等);此外,转录组核心基因(core genes)的核苷酸多态性(single nucleotide polymorphism, SNPs)位点序列的系统发育树显示菌株呈明显的物种聚集性。通过进一步分析发现,宿主因素对巴尔通体遗传分化具有一定的作用,而地理因素对巴尔通体遗传分化的作用相对较小,与基因组核心基因SNPs位点序列的系统发育分析结果一致。本研究通过差异转录组分析揭示了巴尔通体物种间的遗传分化和系统发育关系,发现不同种和不同宿主来源的菌株间存在规律性差异。这些差异与传统基因组分析结果一致,表明转录组数据可有效用于物种间的遗传分化研究。
陈敏, 韩娜, 缪玉, 强裕俊, 张雯, 刘蓬勃, 刘起勇, 栗冬梅. 物种分化因素影响下的巴尔通体差异转录组分析[J]. 遗传, 2025, 47(3): 366-381.
Min Chen, Na Han, Yu Miao, Yujun Qiang, Wen Zhang, Pengbo Liu, Qiyong Liu, Dongmei Li. Differential transcriptome profiling of Bartonella spp. influenced by the species divergence factors[J]. Hereditas(Beijing), 2025, 47(3): 366-381.
表1
27株巴尔通体菌株的基本信息"
宿主 | 种 | 数量 | 地区 | 菌株 |
---|---|---|---|---|
家猫 | B. henselae | 12 | 北京 | M2BJCW、M6BJND、M1BJ、M13BJ |
山东 | M68SHDLC、M45SHDLC、M7SHDLC、M20SHD | |||
河南 | M61HENAN、M145HEN、M8HEN | |||
美国 | Houston-1(ATCC 49882) | |||
B. koehlerae | 1 | 美国 | C-29(ATCC 700693) | |
B. clarridgeiae | 2 | 美国 | Houston-2 cat(ATCC 51734) | |
河南 | M9HENGX | |||
猕猴 | B. quintana | 12 | 四川 | HOU35SC、HOU38SC、HOU40SC、HOU52SC、HOU56SC、HOU98SC、HOU11SC、HOU128SC、HOU6SC |
北京 | S13、M22 | |||
人 | B. quintana | 1 | 美国 | Toulose(ATCC VR-358) |
表2
转录组测序结果"
宿主 | 种 | 菌株 | 原始读数 | 干净读数 | 干净碱基(Gb) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|---|
家猫 | B. henselae | M1BJ | 19,373,610 | 17,135,816 | 2.4 | 94.48 | 49.28 |
M2BJCW | 20,214,804 | 17,079,420 | 2.4 | 94.26 | 39.19 | ||
M6BJND | 25,446,512 | 23,753,754 | 3.4 | 93.93 | 42.50 | ||
M8HEN | 22,528,882 | 20,764,324 | 3.0 | 91.79 | 41.87 | ||
M13BJ | 26,843,230 | 17,893,966 | 2.6 | 94.04 | 40.79 | ||
M20SHDLC | 24,957,434 | 16,708,256 | 2.4 | 93.39 | 39.83 | ||
M61HENAN | 25,530,012 | 23,739,144 | 3.4 | 94.73 | 49.26 | ||
M68SHDLC | 19,484,726 | 17,703,444 | 2.6 | 93.71 | 41.57 | ||
M45SHDLC | 28,372,858 | 21,239,212 | 3.0 | 91.98 | 40.21 | ||
M145HEN | 26,954,782 | 24,001,022 | 3.4 | 92.68 | 43.92 | ||
M7SHDLC | 22,564,912 | 17,713,422 | 2.6 | 93.10 | 41.14 | ||
Houston-1 | 25,882,948 | 15,769,192 | 2.2 | 93.47 | 40.71 | ||
B. koehlerae | C-29 | 31,326,614 | 11,339,002 | 1.6 | 94.68 | 44.30 | |
B. clarridgeiae | Houston-2 cat | 24,183,352 | 17,036,452 | 2.4 | 93.89 | 37.92 | |
M9HENGX | 24,928,200 | 15,652,306 | 2.2 | 93.51 | 36.36 | ||
猕猴 | B. quintana | HOU98SC | 53,833,058 | 37,058,642 | 5.4 | 92.18 | 45.11 |
HOU6SC | 28,717,110 | 17,282,722 | 2.4 | 93.75 | 43.31 | ||
M22 | 25,862,670 | 14,615,018 | 2.0 | 94.69 | 41.72 | ||
S13 | 19,242,020 | 17,893,966 | 2.6 | 95.50 | 43.90 | ||
HOU52SC | 23,663,466 | 20,378,338 | 3.0 | 91.45 | 45.73 | ||
HOU35SC | 31,005,158 | 25,245,900 | 3.6 | 93.42 | 49.65 | ||
HOU38SC | 18,593,934 | 13,888,642 | 2.6 | 91.44 | 43.41 | ||
HOU40SC | 24,852,202 | 23,369,370 | 3.4 | 95.04 | 48.24 | ||
HOU56SC | 24,512,310 | 18,701,146 | 2.6 | 93.88 | 45.53 | ||
HOU128SC | 23,994,176 | 19,540,850 | 2.8 | 94.27 | 45.11 | ||
HOU11SC | 23,544,806 | 17,121,884 | 2.4 | 94.26 | 45.57 | ||
人 | B. quintana | Toulose | 31,136,226 | 12,707,986 | 1.9 | 94.68 | 46.34 |
表4
DEGs KEGG富集分析涉及的通路"
编号 | 途径 | 编号 | 途径 |
---|---|---|---|
ko03016 | 转运核糖核酸的生物生成 | ko00785 | 硫辛酸代谢 |
ko03009 | 核糖体生物发生 | ko00564 | 甘油磷脂代谢 |
ko03010 | 核糖体 | ko00061 | 脂肪酸的生物合成 |
ko00240 | 嘧啶代谢 | ko03400 | DNA修复和重组蛋白 |
ko00230 | 嘌呤代谢 | ko00300 | 赖氨酸的生物合成 |
ko03060 | 蛋白质输出 | ko00020 | 柠檬酸循环(TCA循环) |
ko02048 | 原核生物防御系统 | ko03036 | 染色体和相关蛋白 |
ko00860 | 卟啉代谢 | ko03110 | 伴侣蛋白和折叠催化剂 |
ko03011 | 核糖体 | ko03410 | 碱基切除修复 |
ko01007 | 氨基酸相关酶 | ko03070 | 细菌分泌系统 |
ko01011 | 肽聚糖生物合成和降解蛋白 | ko00220 | 精氨酸的生物合成 |
ko00190 | 氧化磷酸化 | ko00970 | 氨基酰-tRNA的生物合成 |
表5
转录组与基因组数据的CDS数量"
宿主 | 种 | 菌株 | CDS数量 | |
---|---|---|---|---|
转录组 | 基因组 | |||
家猫 | B. henselae | M1BJ | 922 | 1,347 |
M2BJCW | 1,332 | 1,348 | ||
M6BJND | 1,277 | 1,342 | ||
M8HEN | 1,295 | 1,347 | ||
M13BJ | 1,326 | 1,326 | ||
M20SHDLC | 1,326 | 1,326 | ||
M61HENAN | 945 | 1,343 | ||
M68SHDLC | 1,315 | 1,341 | ||
M45SHDLC | 1,327 | 1,327 | ||
M145HEN | 1,220 | 1,330 | ||
M7SHDLC | 1,316 | 1,329 | ||
Houston-1 | 1,348 | 1,348 | ||
B. koehlerae | C-29 | 1,201 | 1,202 | |
B. clarridgeiae | Houston-2 cat | 1,132 | 1,132 | |
M9HENGX | 1,132 | 1,131 | ||
猕猴 | B. quintana | HOU98SC | 1,107 | 1,107 |
HOU6SC | 1,107 | 1,107 | ||
M22 | 1,107 | 1,107 | ||
S13 | 1,097 | 1,107 | ||
HOU52SC | 995 | 1,107 | ||
HOU35SC | 813 | 1,109 | ||
HOU38SC | 600 | 1,107 | ||
HOU40SC | 923 | 1,107 | ||
HOU56SC | 1,107 | 1,107 | ||
HOU128SC | 1,107 | 1,107 | ||
HOU11SC | 1,107 | 1,107 | ||
人 | B. quintana | Toulose | 1,104 | 1,105 |
[1] | Wagner A, Dehio C. Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol, 2019, 21(3): e13004. |
[2] | Chomel BB, Boulouis HJ, Breitschwerdt EB, Kasten RW, Vayssier-Taussat M, Birtles RJ, Koehler JE, Dehio C. Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res, 2009, 40(2): 29. |
[3] |
Dehio C. Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol, 2005, 3(8): 621-631.
pmid: 16064054 |
[4] |
Kosoy M, McKee C, Albayrak L, Fofanov Y. Genotyping of Bartonella bacteria and their animal hosts: current status and perspectives. Parasitology, 2018, 145(5): 543-562.
doi: 10.1017/S0031182017001263 pmid: 28764816 |
[5] |
O'Rourke F, Schmidgen T, Kaiser PO, Linke D, Kempf VAJ. Adhesins of Bartonella spp. Adv Exp Med Biol, 2011, 715: 51-70.
doi: 10.1007/978-94-007-0940-9_4 pmid: 21557057 |
[6] | Tahmasebi Ashtiani Z, Ahmadinezhad M, Bagheri Amiri F, Esmaeili S. Geographical distribution of Bartonella spp in the countries of the WHO Eastern Mediterranean Region (WHO-EMRO). J Infect Public Health, 2024, 17(4): 612-618. |
[7] | Sricharern W, Kaewchot S, Saengsawang P, Kaewmongkol S, Inpankaew T. Molecular detection of Bartonella quintana among long-tailed macaques (Macaca fascicularis) in Thailand. Pathogens, 2021, 10(5): 629. |
[8] | Vayssier-Taussat M, Le Rhun D, Bonnet S, Cotté V. Insights in Bartonella host specificity. Ann N Y Acad Sci, 2009, 1166: 127-132. |
[9] | Mosepele M, Mazo D, Cohn J. Bartonella infection in immunocompromised hosts: immunology of vascular infection and vasoproliferation. Clin Dev Immunol, 2012, 2012: 612809. |
[10] | Regier Y, O Rourke F, Kempf VAJ. Bartonella spp. - a chance to establish One Health concepts in veterinary and human medicine. Parasit Vectors, 2016, 9(1): 261. |
[11] | Yap SM, Saeed M, Logan P, Healy DG. Bartonella neuroretinitis (cat-scratch disease). Pract Neurol, 2020, 20(6): 505-506. |
[12] | Su ZH, Sasaki A, Kusumi J, Chou PA, Tzeng HY, Li HQ, Yu H. Pollinator sharing, copollination, and speciation by host shifting among six closely related dioecious fig species. Commun Biol, 2022, 5(1): 284. |
[13] | Maier PA, Vandergast AG, Bohonak AJ. Yosemite toad (Anaxyrus canorus) transcriptome reveals interplay between speciation genes and adaptive introgression. Mol Ecol, 2024, 33(8): e17317. |
[14] |
McCulloch GA, Foster BJ, Dutoit L, Harrop TWR, Guhlin J, Dearden PK, Waters JM. Genomics reveals widespread ecological speciation in flightless insects. Syst Biol, 2021, 70(5): 863-876.
doi: 10.1093/sysbio/syaa094 pmid: 33346837 |
[15] | Wang YJ, Qiao ZL, Mao LY, Li F, Liang XL, An X, Zhang SZ, Liu X, Kuang ZR, Wan N, Nevo E, Li KX. Sympatric speciation of the spiny mouse from Evolution Canyon in Israel substantiated genomically and methylomically. Proc Natl Acad Sci USA, 2022, 119(13): e2121822119. |
[16] | Liu X, Zhang SZ, Cai ZY, Kuang ZR, Wan N, Wang YJ, Mao LY, An X, Li F, Feng T, Liang XL, Qiao ZL, Nevo E, Li KX. Genomic insights into zokors' phylogeny and speciation in China. Proc Natl Acad Sci USA, 2022, 119(19): e2121819119. |
[17] |
Zhou CW, Xiao SJ, Liu YC, Mou ZB, Zhou JS, Pan YZ, Zhang C, Wang J, Deng XX, Zou M, Liu HP. Comprehensive transcriptome data for endemic Schizothoracinae fish in the Tibetan Plateau. Sci Data, 2020, 7(1): 28.
doi: 10.1038/s41597-020-0361-6 pmid: 31964888 |
[18] | Wang XW, Zhao QY, Luan JB, Wang YJ, Yan GH, Liu SS. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genomics, 2012, 13: 529. |
[19] | Abromaitis S, Nelson CS, Previte D, Yoon KS, Clark JM, DeRisi JL, Koehler JE. Bartonella quintana deploys host and vector temperature-specific transcriptomes. PLoS One, 2013, 8(3): e58773. |
[20] | Tu N, Carroll RK, Weiss A, Shaw LN, Nicolas G, Thomas S, Lima A, Okaro U, Anderson B. A family of genus-specific RNAs in tandem with DNA-binding proteins control expression of the badA major virulence factor gene in Bartonella henselae. Microbiologyopen, 2017, 6(2): e00420. |
[21] | Shen W, Le S, Li Y, Hu FQ. SeqKit: a cross-platform and ultrafast toolkit for fasta/q file manipulation. PLoS One, 2016, 11(10): e0163962. |
[22] | Guo JY, Sun YL, Luo XY, Li MX, He P, He L, Zhao JL. De novo transcriptome sequencing and comparative analysis of Haemaphysalis flava Neumann, 1897 at larvae and nymph stages. Infect Genet Evol, 2019, 75: 104008. |
[23] |
Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150-3152.
doi: 10.1093/bioinformatics/bts565 pmid: 23060610 |
[24] |
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol, 2019, 1962: 227-245.
doi: 10.1007/978-1-4939-9173-0_14 pmid: 31020564 |
[25] | Roegner ME, Watson RD. De novo transcriptome assembly and functional annotation for y-organs of the blue crab (Callinectes sapidus), and analysis of differentially expressed genes during pre-molt. Gen Comp Endocrinol, 2020, 298: 113567. |
[26] |
Fobe TL, Kazakov A, Riccardi D. Cys.sqlite: a structured-information approach to the comprehensive analysis of cysteine disulfide bonds in the protein databank. J Chem Inf Model, 2019, 59(2): 931-943.
doi: 10.1021/acs.jcim.8b00950 pmid: 30694665 |
[27] |
Zhao SR, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA, 2020, 26(8): 903-909.
doi: 10.1261/rna.074922.120 pmid: 32284352 |
[28] | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15(12): 550. |
[29] | Sarma RJ, Subbarayan S, Zohmingthanga J, Chenkual S, Zomuana T, Lalruatfela ST, Pautu JL, Maitra A, Kumar NS. Transcriptome analysis reveals SALL4 as a prognostic key gene in gastric adenocarcinoma. J Egypt Natl Canc Inst, 2022, 34(1): 11. |
[30] |
Yu GC, Wang LG, Han YY, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5): 284-287.
doi: 10.1089/omi.2011.0118 pmid: 22455463 |
[31] |
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33(3): 290-295.
doi: 10.1038/nbt.3122 pmid: 25690850 |
[32] |
Pertea G, Pertea M. Gff utilities: GffRead and GffCompare. F1000Res, 2020, 9: 304.
doi: 10.12688/f1000research.23297.1 pmid: 32489650 |
[33] |
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14): 2068-2069.
doi: 10.1093/bioinformatics/btu153 pmid: 24642063 |
[34] |
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015, 31(22): 3691-3693.
doi: 10.1093/bioinformatics/btv421 pmid: 26198102 |
[35] | Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR. SNP-sites: rapid efficient extraction of SNPs from multi-fasta alignments. Microb Genom, 2016, 2(4): e000056. |
[36] | Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32(1): 268-274. |
[37] |
Huelsenbeck JP, Ronquist F. MrBayes: bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17(8): 754-755.
doi: 10.1093/bioinformatics/17.8.754 pmid: 11524383 |
[38] | Li YY, Lin SJ, Lu YH, Hu HL, Wang ZH. Research on diversity and phylogenetics of Trametes in Fujian province. Guangdong AG Sci, 2014, 41(10): 146-151, 159. |
李央央, 林顺吉, 芦宇航, 胡红莉, 王宗华. 福建栓菌多样性及分子系统学研究. 广东农业科学, 2014, 41(10): 146-151, 159. | |
[39] | Zheng ZY, Li Y, Li MJ, Li GT, Du X, Hongyin H, Yin M, Lu ZQ, Zhang X, Shrestha N, Liu JQ, Yang YZ. Whole-genome diversification analysis of the Hornbeam species reveals speciation and adaptation among closely related species. Front Plant Sci, 2021, 12: 581704. |
[40] |
Morales P, Gajardo F, Valdivieso C, Valladares MA, Di Genova A, Orellana A, Gutiérrez RA, González M, Montecino M, Maass A, Méndez MA, Allende ML. Genomes of the Orestias pupfish from the Andean Altiplano shed light on their evolutionary history and phylogenetic relationships within Cyprinodontiformes. BMC Genomics, 2024, 25(1): 614.
doi: 10.1186/s12864-024-10416-w pmid: 38890559 |
[41] | Fu PC, Twyford AD, Hao YT, Zhang Y, Chen SL, Sun SS. Hybridization and divergent climatic preferences drive divergence of two allopatric Gentiana species on the Qinghai-Tibet Plateau. Ann Bot, 2023, 132(7): 1271-1288. |
[42] | Dool SE, Picker MD, Eberhard MJB. Limited dispersal and local adaptation promote allopatric speciation in a biodiversity hotspot. Mol Ecol, 2022, 31(1): 279-295. |
[43] | Liu R, Ma LY, Wang HM, Liu D, Lu XL, Huang XP, Huang SS, Liu XD. Comparative genomics reveals intraspecific divergence of Acidithiobacillus ferrooxidans: insights from evolutionary adaptation. Microb Genom, 2023, 9(6): mgen001038. |
[44] | Cridland JM, Contino CE, Begun DJ. Selection and geography shape male reproductive tract transcriptomes in Drosophila melanogaster. Genetics, 2023, 224(1): iyad034. |
[45] | Chen N, Zhang H, Zang E, Liu ZX, Lan YF, Hao WL, He S, Fan X, Sun GL, Wang YL. Adaptation insights from comparative transcriptome analysis of two Opisthopappus species in the Taihang mountains. BMC Genomics, 2022, 23(1): 466. |
[46] | Jin WT, Gernandt DS, Wehenkel C, Xia XM, Wei XX, Wang XQ. Phylogenomic and ecological analysis reveal the spatiotemporal evolution of global pines. Proc Natl Acad Sci USA, 2021, 118(20): e2022302118. |
[47] | Zhao YJ, Cao Y, Wang J, Xiong Z. Transcriptome sequencing of Pinus kesiya var. langbianensis and comparative analysis in the Pinus phylogeny. BMC Genomics, 2018, 19(1): 725. |
[48] | McKee CD, Hayman DTS, Kosoy MY, Webb CT. Phylogenetic and geographic patterns of Bartonella host shifts among bat species. Infect Genet Evol, 2016, 44: 382-394. |
[49] | McKee CD, Bai Y, Webb CT, Kosoy MY. Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. Infect Genet Evol, 2021, 89: 104719. |
[50] | Liu HW, Li CX, Li Fen, Lu CJ, Wu SY, Qin WQ. Transcriptome analysis and gene function annotation of Tetrastichus brontispae. Chin J Biol control, 2021, 37(3): 412-419. |
刘华伟, 李朝绪, 李芬, 吕朝军, 吴少英, 覃伟权. 椰心叶甲啮小蜂转录组分析及基因功能注释. 中国生物防治学报, 2021, 37(3): 412-419.
doi: 10.16409/j.cnki.2095-039x.2021.03.016 |
|
[51] | Xin Jing, Li BIN, Ye Peng, Liu Cheng, Tang JR, Zhang GL, Xin PY. Transcriptome sequence analysis and functional annotation of Camellia fascicularis H. T. Chang. Non-wood Forest Res, 2020, 38(3): 85-94. |
辛静, 李斌, 叶鹏, 刘成, 唐军荣, 张贵良, 辛培尧. 云南金花茶转录组序列分析及功能注释. 经济林研究, 2020, 38(3): 85-94. | |
[52] | Liu D, Zeng QM, Liu B, Li Y, Chen SP. Transcriptome analysis and gene functional annotation in Phoebe bournei. BBR, 2020, 40(4): 613-622. |
刘丹, 曾钦朦, 刘斌, 李煜, 陈世品. 闽楠转录组分析及基因功能注释. 植物研究, 2020, 40(4): 613-622.
doi: 10.7525/j.issn.1673-5102.2020.04.016 |
|
[53] | Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host? Front Immunol, 2018, 9: 2416. |
[54] | Buffet JP, Pisanu B, Brisse S, Roussel S, Félix B, Halos L, Chapuis JL, Vayssier-Taussat M. Deciphering Bartonella diversity, recombination, and host specificity in a rodent community. PLoS One, 2013, 8(7): e68956. |
[55] | Fromm K, Dehio C. The impact of Bartonella VirB/VirD4 type IV secretion system effectors on eukaryotic host cells. Front Microbiol, 2021, 12: 762582. |
[56] |
Schröder G, Dehio C. Virulence-associated type IV secretion systems of Bartonella. Trends Microbiol, 2005, 13(7): 336-342.
pmid: 15935675 |
[57] | Wang CY, Zhang HR, Fu JQ, Wang M, Cai YH, Ding TY, Jiang JZ, Koehler JE, Liu XY, Yuan CL. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog, 2021, 17(1): e1009065. |
[58] |
Villamil Giraldo AM, Mary C, Sivanesan D, Baron C. VirB6 and VirB10 from the Brucella type IV secretion system interact via the N-terminal periplasmic domain of VirB6. FEBS Lett, 2015, 589(15): 1883-1889.
doi: 10.1016/j.febslet.2015.05.051 pmid: 26071378 |
[59] |
Atmakuri K, Cascales E, Christie PJ. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol, 2004, 54(5): 1199-1211.
pmid: 15554962 |
[60] | Marlaire S, Dehio C. Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane. PLoS Pathog, 2021, 17(1): e1008548. |
[61] |
Truttmann MC, Rhomberg TA, Dehio C. Combined action of the type IV secretion effector proteins BepC and BepF promotes invasome formation of Bartonella henselae on endothelial and epithelial cells. Cell Microbiol, 2011, 13(2): 284-299.
doi: 10.1111/j.1462-5822.2010.01535.x pmid: 20964799 |
[62] | Hook C, Eremina N, Zaytsev P, Varlamova D, Stoynova N. The Escherichia coli amino acid uptake protein CycA: regulation of its synthesis and practical application in l-Isoleucine production. Microorganisms, 2022, 10(3): 647. |
[63] | Shi HM, Zhang L, Gu J, Li JY, Liu ZX, Deng JY. CycA-dependent glycine assimilation is connected to novobiocin susceptibility in Escherichia coli. Microbiol Spectr, 2022, 10(6): e0250122. |
[64] | Phillips GJ, Silhavy TJ. The E. coli ffh gene is necessary for viability and efficient protein export. Nature, 1992, 359(6397): 744-746. |
[65] |
Patel S, Austen BM. Substitution of fifty four homologue (Ffh) in Escherichia coli with the mammalian 54-kDa protein of signal-recognition particle. Eur J Biochem, 1996, 238(3): 760-768.
pmid: 8706678 |
[66] | Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB. SecDF as part of the sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS One, 2014, 9(8): e103326. |
[67] |
Quiblier C, Zinkernagel AS, Schuepbach RA, Berger- Bächi B, Senn MM. Contribution of SecDF to Staphylococcus aureus resistance and expression of virulence factors. BMC Microbiol, 2011, 11: 72.
doi: 10.1186/1471-2180-11-72 pmid: 21486434 |
[68] | Guo LN, Huang LX, Su YQ, Qin YX, Zhao LM, Yan QP. secA, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus. Microbiologyopen, 2018, 7(2): e00551. |
[69] | Jain K, Stanage TH, Wood EA, Cox MM. The Escherichia coli serS gene promoter region overlaps with the rarA gene. PLoS One, 2022, 17(4): e0260282. |
[70] |
Sun CW, Dong ZD, Zhao L, Ren Y, Zhang N, Chen F. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18(6): 1354-1360.
doi: 10.1111/pbi.13361 pmid: 32065714 |
[71] | Foster JT, Beckstrom-Sternberg SM, Pearson T, Beckstrom-Sternberg JS, Chain PSG, Roberto FF, Hnath J, Brettin T, Keim P. Whole-genome-based phylogeny and divergence of the genus Brucella. J Bacteriol, 2009, 191(8): 2864-2870. |
[72] | Choi S, Jin GD, Park J, You I, Kim EB. Pan-genomics of Lactobacillus plantarum revealed group-specific genomic profiles without habitat association. J Microbiol Biotechnol, 2018, 28(8): 1352-1359. |
[73] |
Hahn MW, Koll U, Jezberová J, Camacho A. Global phylogeography of pelagic polynucleobacter bacteria: restricted geographic distribution of subgroups, isolation by distance and influence of climate. Environ Microbiol, 2015, 17(3): 829-840.
doi: 10.1111/1462-2920.12532 pmid: 24920455 |
[1] | 韩超飞, 陈灵, 王源秀, 程前, 左胜, 刘华彬, 王程亮. 基于转录组学挖掘与分析NJ9108水稻种子寿命的关键基因[J]. 遗传, 2025, 47(3): 351-365. |
[2] | 卢宇蓝, 李国壮, 王雅琼, 徐可欣, 董欣然, 蔡继昊, 吴冰冰, 王慧君, 方萍, 王剑, 王华, 孙路明, 叶勇裕, 李晴, 刘雅萍, 刘丽, 刘宁, 刘嘉琦, 宋昉, 杨琳, 邱正庆, 陈泽夫, 罗华夏, 郭丹, 郝婵娟, 赵森, 黄尚志, 彭镜, 蔡小强, 睢瑞芳, 李林康, 吴南, 周文浩, 张抒扬. 临床基因组测序解读与报告专家共识[J]. 遗传, 2025, 47(3): 314-328. |
[3] | 沈洁宇, 苏天晗, 余大奇, 谭生军, 张勇. 基因重复驱动的演化:基因组学时代的回顾与展望[J]. 遗传, 2025, 47(2): 147-171. |
[4] | 吴宏, 章誉兴, 于黎. 动物物种形成研究进展[J]. 遗传, 2025, 47(1): 58-70. |
[5] | 王则夫, 刘建全. 基因组时代的物种形成研究[J]. 遗传, 2025, 47(1): 71-100. |
[6] | 张达轩, 戴沈汝, 崔银秋. 古基因组视角下的亚洲北部人群迁徙和演化机制[J]. 遗传, 2025, 47(1): 34-45. |
[7] | 平婉菁, 薛家旸, 付巧妹. 古DNA解析东亚南北方人群的迁徙与演化历史[J]. 遗传, 2025, 47(1): 18-33. |
[8] | 鲍艳春, 石彩霞, 张传强, 谷明娟, 朱琳, 刘在霞, 周乐, 马凤英, 娜日苏, 张文广. 深度学习在基因组学中的研究进展[J]. 遗传, 2024, 46(9): 701-715. |
[9] | 胡玉龙, 杨芳, 陈彦潼, 谌烁楷, 闫煜博, 张跃博, 吴晓林, 汪加明, 何俊, 高宁. 整合mRNA转录本与基因组信息的基因组选择方法研究[J]. 遗传, 2024, 46(7): 560-569. |
[10] | 唐恒磊, 郑树涛, 李友, 钟望涛. 心源性卒中的遗传学研究进展[J]. 遗传, 2024, 46(5): 373-386. |
[11] | 高林豫, 许琦, 何钰霄, 习海娇, 刘一帆, 张涛, 李金泉, 张燕军, 王瑞军, 吕琦, 梅步俊, 苏蕊, 王志英. 基于多性状模型内蒙古绒山羊早期生长性状基因组预测准确性研究[J]. 遗传, 2024, 46(5): 421-430. |
[12] | 张傲, 岑山, 李晓宇. N6-腺苷甲基化修饰及其对LINE-1的调控机制[J]. 遗传, 2024, 46(3): 209-218. |
[13] | 韦恒, 刘天鹏, 何继红, 董孔军, 任瑞玉, 张磊, 李亚伟, 郝子义, 杨天育. 糜子GRF转录因子全基因组鉴定及在茎分生组织中的表达特征[J]. 遗传, 2024, 46(3): 242-255. |
[14] | 刘羽诚, 申妍婷, 田志喜. 大豆泛基因组研究进展[J]. 遗传, 2024, 46(3): 183-198. |
[15] | 郑慧怡, 吴华煊, 杜志强. 肠道宏基因组图像增强和深度学习改善代谢性疾病分类预测精度[J]. 遗传, 2024, 46(10): 886-896. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: