遗传 ›› 2025, Vol. 47 ›› Issue (1): 58-70.doi: 10.16288/j.yczz.24-206
收稿日期:
2024-07-11
修回日期:
2024-08-17
出版日期:
2025-01-20
发布日期:
2024-09-19
通讯作者:
于黎,博士,研究员,研究方向:动物遗传与进化。E-mail: yuli@ynu.edu.cn作者简介:
吴宏,博士,教授,研究方向:哺乳动物物种形成与表型多样化。E-mail: whzxsg@126.com
基金资助:
Hong Wu1(), Yuxing Zhang1, Li Yu1,2(
)
Received:
2024-07-11
Revised:
2024-08-17
Published:
2025-01-20
Online:
2024-09-19
Supported by:
摘要:
物种形成研究是人们关于新物种如何产生和维持的思考和探索,是进化生物学最重要的组成部分之一。对物种形成方式、生殖隔离产生过程及其内在遗传机制的探究和揭示,是物种形成研究领域的重要命题和主要研究内容,也是认识和理解自然界中物种多样性现象的关键线索和重要依据。本文聚焦于动物类群,首先介绍了目前人们关于物种概念的不同定义,在此基础上,围绕动物物种形成方式、生殖隔离分子机制等所取得的研究进展和重要突破进行阐述,并分析了目前动物物种形成相关研究的局限;最后,探讨了今后动物物种形成研究中潜在的新机遇和新突破。
吴宏, 章誉兴, 于黎. 动物物种形成研究进展[J]. 遗传, 2025, 47(1): 58-70.
Hong Wu, Yuxing Zhang, Li Yu. Progress on animal speciation studies[J]. Hereditas(Beijing), 2025, 47(1): 58-70.
表1
动物类群物种间合子后隔离关键基因"
物种 | 基因名称 | 杂交类群 | 生殖隔离表现形式 | 参考文献 |
---|---|---|---|---|
果蝇 | Nup160 | D. melanogaster × D. simulans | 杂交致死 | [ |
Nup96 | D. melanogaster × D. simulans | 杂交致死 | [ | |
Hmr | D. melanogaster × D. simulans | 杂交致死 | [ | |
Lhr | D. melanogaster × D. simulans | 杂交致死 | [ | |
JYalpha | D. melanogaster ×D. simulans | 杂交雄性不育 | [ | |
gfzf | D. melanogaster × D. simulans | 杂交致死 | [ | |
Zhr | D. melanogaster × D. simulans | 杂交致死 | [ | |
Hhl | D. melanogaster × D. simulans, D. mauritiana, D. sechellia | 杂交致死 | [ | |
Odysseus | D. mauritiana × D. simulans | 杂交雄性不育 | [ | |
agt | D. mauritiana × D. simulans | 杂交雄性不育 | [ | |
Taf1 | D. mauritiana × D. simulans | 杂交雄性不育 | [ | |
Ovd | D. pseudoobscura bogatana × D. p. pseudoobscura | 杂交雄性不育 | [ | |
剑尾鱼 | ndufa13 | X. birchmanni × X. malinche | 杂交致死 | [ |
ndufs5 | X. birchmanni × X. malinche | 杂交致死 | [ | |
Xmrk | X. maculatus × X. helleri | 杂交致死 | [ | |
小鼠 | PRDM9 | Mus musculus musculus × M. m.domesticus | 杂交雄性不育 | [ |
[1] | Mishler BD, Brandon RN. Individuality, pluralism, and the phylogenetic species concept. Biol Philos, 1987, 2(4): 397-414. |
[2] | Mayden RL. On biological species, species concepts and individuation in the natural world. Fish Fish, 2002, 3(3): 171-196. |
[3] | Hong DY. Biodiversity pursuits need a scientific and operative species concept. Biodiversity Sci, 2016, 24(9): 979-999. |
洪德元. 生物多样性事业需要科学、可操作的物种概念. 生物多样性, 2016, 24(9): 979-999.
doi: 10.17520/biods.2016203 |
|
[4] | Mayr E. Systematics and the Origin of Species from the Viewpoint of a Zoologist. New York: Columbia University Press, 1942. |
[5] | Paterson HEH, McEvey SF. Evolution and the Recognition Concept of Species:Collected Writings. Baltimore: Johns Hopkins University Press, 1993. |
[6] | Wu CI. The genic view of the process of speciation. J Evol Biol, 2001, 14(6): 851-865. |
[7] |
Baker RJ, Bradley RD. Speciation in mammals and the genetic species concept. J Mammal, 2006, 87(4): 643-662.
doi: 10.1644/06-MAMM-F-038R2.1 pmid: 19890476 |
[8] | Van Valen L. Ecological species, multispecies, and oaks. Taxon, 1976, 25(2-3): 233-239. |
[9] | Simpson GG. Criteria for genera, species, and subspecies in zoology and paleozoology. Ann N Y Acad Sci, 1943, 44(2): 145-178. |
[10] | Simpson GG. Principles of Animal Taxonomy. New York: Columbia University Press, 1961. |
[11] | Wu CI, Ting CT. Genes and speciation. Nat Rev Genet, 2004, 5(2): 114-122. |
[12] | Liu JQ. “The integrative species concept” and “species on the speciation way”. Biodiversity Sci, 2016, 24(9): 1004-1008. |
刘建全. “整合物种概念”和“分化路上的物种”. 生物多样性, 2016, 24(9): 1004-1008.
doi: 10.17520/biods.2016222 |
|
[13] | Mayr E. Animal Species and Evolution. Cambridge: Harvard University Press, 1963. |
[14] | Butlin RK, Galindo J, Grahame JW. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc Lond B Biol Sci, 2008, 363(1506): 2997-3007. |
[15] | Mallet J, Meyer A, Nosil P, Feder JL. Space, sympatry and speciation. J Evol Biol, 2009, 22(11): 2332-2341. |
[16] |
Elmer KR, Meyer A. Sympatric speciation without borders? Mol Ecol, 2010, 19(10): 1991-1993.
doi: 10.1111/j.1365-294X.2010.04612.x pmid: 20550632 |
[17] | Malay MCMD, Paulay G. Peripatric speciation drives diversification and distributional pattern of reef hermit crabs (Decapoda: Diogenidae: Calcinus). Evolution, 2010, 64(3): 634-662. |
[18] |
Castellanos-Morales G, Gámez N, Castillo-Gámez RA, Eguiarte LE. Peripatric speciation of an endemic species driven by Pleistocene climate change: the case of the Mexican prairie dog (Cynomys mexicanus). Mol Phylogenet Evol, 2016, 94(Pt A):171-181.
doi: 10.1016/j.ympev.2015.08.027 pmid: 26343460 |
[19] |
Gavrilets S, Li H, Vose MD. Patterns of parapatric speciation. Evolution, 2000, 54(4): 1126-1134.
pmid: 11005282 |
[20] | Bolnick DI, Fitzpatrick BM. Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst, 2007, 38: 459-487. |
[21] | Runemark A, Vallejo-Marin M, Meier JI. Eukaryote hybrid genomes. PLoS Genet, 2019, 15(11): e1008404. |
[22] | Mallet J. Hybrid speciation. Nature, 2007, 446(7133): 279-283. |
[23] |
Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol, 2004, 19(4): 198-207.
doi: 10.1016/j.tree.2004.01.003 pmid: 16701254 |
[24] | Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez- Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D. Hybridization and speciation. J Evol Biol, 2013, 26(2): 229-246. |
[25] |
Taylor SA, Larson EL. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat Ecol Evol, 2019, 3(2): 170-177.
doi: 10.1038/s41559-018-0777-y pmid: 30697003 |
[26] | Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife, 2021, 10: e69016. |
[27] |
Grant PR, Grant BR. Hybridization increases population variation during adaptive radiation. Proc Natl Acad Sci USA, 2019, 116(46): 23216-23224.
doi: 10.1073/pnas.1913534116 pmid: 31659024 |
[28] |
Rieseberg LH, Carney SE. Plant hybridization. New Phytol, 1998, 140(4): 599-624.
doi: 10.1046/j.1469-8137.1998.00315.x pmid: 33862960 |
[29] |
Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol, 2005, 20(5): 229-237.
doi: 10.1016/j.tree.2005.02.010 pmid: 16701374 |
[30] |
Marques DA, Meier JI, Seehausen O. A combinatorial view on speciation and adaptive radiation. Trends Ecol Evol, 2019, 34(6): 531-544.
doi: S0169-5347(19)30055-2 pmid: 30885412 |
[31] | Peñalba JV, Runemark A, Meier JI, Singh P, Wogan GOU, Sánchez-Guillén R, Mallet J, Rometsch SJ, Menon M, Seehausen O, Kulmuni J, Pereira RJ. The role of hybridization in species formation and persistence. Cold Spring Harb Perspect Biol, 2024, a041445. |
[32] |
Schumer M, Rosenthal GG, Andolfatto P. How common is homoploid hybrid speciation? Evolution, 2014, 68(6): 1553-1560.
doi: 10.1111/evo.12399 pmid: 24620775 |
[33] | Schumer M, Rosenthal GG, Andolfatto P. What do we mean when we talk about hybrid speciation? Heredity (Edinb), 2018, 120(4): 379-382. |
[34] |
Presgraves DC. The molecular evolutionary basis of species formation. Nat Rev Genet, 2010, 11(3): 175-180.
doi: 10.1038/nrg2718 pmid: 20051985 |
[35] |
Mack KL, Nachman MW. Gene regulation and speciation. Trends Genet, 2017, 33(1): 68-80.
doi: S0168-9525(16)30150-0 pmid: 27914620 |
[36] | Hermansen JS, Haas F, Trier CN, Bailey RI, Nederbragt AJ, Marzal A, Sætre GP. Hybrid speciation through sorting of parental incompatibilities in Italian sparrows. Mol Ecol, 2014, 23(23): 5831-5842. |
[37] | Schumer M, Cui RF, Rosenthal GG, Andolfatto P. Reproductive isolation of hybrid populations driven by genetic incompatibilities. PLoS Genet, 2015, 11(3): e1005041. |
[38] |
Nice CC, Gompert Z, Fordyce JA, Forister ML, Lucas LK, Buerkle CA. Hybrid speciation and independent evolution in lineages of alpine butterflies. Evolution, 2013, 67(4): 1055-1068.
doi: 10.1111/evo.12019 pmid: 23550755 |
[39] |
Gompert Z, Fordyce JA, Forister ML, Shapiro AM, Nice CC. Homoploid hybrid speciation in an extreme habitat. Science, 2006, 314(5807): 1923-1925.
pmid: 17138866 |
[40] |
Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun, 2017, 8: 14363.
doi: 10.1038/ncomms14363 pmid: 28186104 |
[41] | Elgvin TO, Trier CN, Tørresen OK, Hagen IJ, Lien S, Nederbragt AJ, Ravinet M, Jensen H, Sætre GP. The genomic mosaicism of hybrid speciation. Sci Adv, 2017, 3(6): e1602996. |
[42] | Runemark A, Trier CN, Eroukhmanoff F, Hermansen JS, Matschiner M, Ravinet M, Elgvin TO, Sætre GP. Variation and constraints in hybrid genome formation. Nat Ecol Evol, 2018, 2(3): 549-556. |
[43] | Jiggins CD, Salazar C, Linares M, Mavarez J. Review. Hybrid trait speciation and heliconius butterflies. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1506): 3047-3054. |
[44] | Salazar C, Baxter SW, Pardo-Diaz C, Wu G, Surridge A, Linares M, Bermingham E, Jiggins CD. Genetic evidence for hybrid trait speciation in heliconius butterflies. PLoS Genet, 2010, 6(4): e1000930. |
[45] | Barrerá-Guzman AO, Aleixo A, Shawkey MD, Weir JT. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc Natl Acad Sci USA, 2018, 115(2): E218-E225. |
[46] |
Lamichhaney S, Han F, Webster MT, Andersson L, Grant BR, Grant PR. Rapid hybrid speciation in Darwin's finches. Science, 2018, 359(6372): 224-228.
doi: 10.1126/science.aao4593 pmid: 29170277 |
[47] | Mavárez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M. Speciation by hybridization in heliconius butterflies. Nature, 2006, 441(7095): 868-871. |
[48] |
Meyer A, Salzburger W, Schartl M. Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Mol Ecol, 2006, 15(3): 721-730.
pmid: 16499697 |
[49] | Wu H, Wang ZF, Zhang YX, Frantz L, Roos C, Irwin DM, Zhang CL, Liu XF, Wu DD, Huang S, Gu TT, Liu JQ, Yu L. Hybrid origin of a primate, the gray snub-nosed monkey. Science, 2023, 380(6648): eabl4997. |
[50] | Zhang BL, Chen W, Wang ZF, Pang W, Luo MT, Wang S, Shao Y, He WQ, Deng Y, Zhou L, Chen JW, Yang MM, Wu YJ, Wang L, Fernández-Bellon H, Molloy S, Meunier H, Wanert F, Kuderna L, Marques-Bonet T, Roos C, Qi XG, Li M, Liu ZJ, Schierup MH, Cooper DN, Liu JQ, Zheng YT, Zhang GJ, Wu DD. Comparative genomics reveals the hybrid origin of a macaque group. Sci Adv, 2023, 9(22): eadd3580. |
[51] | Zou TT, Kuang WM, Yin TT, Frantz L, Zhang C, Liu JQ, Wu H, Yu L. Uncovering the enigmatic evolution of bears in greater depth: the hybrid origin of the Asiatic black bear. Proc Natl Acad Sci USA, 2022, 119(31): e2120307119. |
[52] | Lopes F, Oliveira LR, Beux Y, Kessler A, Cárdenas- Alayza S, Majluf P, Páez-Rosas D, Chaves J, Crespo E, Brownell RL, Baylis AMM, Sepúlveda M, Franco-Trecu V, Loch C, Robertson BC, Peart CR, Wolf JBW, Bonatto SL. Genomic evidence for homoploid hybrid speciation in a marine mammal apex predator. Sci Adv, 2023, 9(18): eadf6601. |
[53] | Wang ZF, Kang MH, Li JL, Zhang ZY, Wang YF, Chen CL, Yang YZ, Liu JQ. Genomic evidence for homoploid hybrid speciation between ancestors of two different genera. Nat Commun, 2022, 13(1): 1987. |
[54] |
Song C, Liu SJ, Xiao J, He WG, Zhou Y, Qin QB, Zhang C, Liu Y. Polyploid organisms. Sci China Life Sci, 2012, 55(4): 301-311.
doi: 10.1007/s11427-012-4310-2 pmid: 22566086 |
[55] |
Comeault AA, Matute DR. Genetic divergence and the number of hybridizing species affect the path to homoploid hybrid speciation. Proc Natl Acad Sci USA, 2018, 115(39): 9761-9766.
doi: 10.1073/pnas.1809685115 pmid: 30209213 |
[56] | Dalbosco Dell'Aglio D, Rivas-Sánchez DF, Wright DS, Merrill RM, Montgomery SH. The sensory ecology of speciation. Cold Spring Harb Perspect Biol, 2024, 16(1): a041428. |
[57] |
Marie Curie SPECIATION Network, Butlin R, Debelle A, Kerth C, Snook RR, Beukeboom LW, Castillo Cajas RF, Diao WW, Maan ME, Paolucci S, Weissing FJ, van de Zande L, Hoikkala A, Geuverink E, Jennings J, Kankare M, Knott KE, Tyukmaeva VI, Zoumadakis C, Ritchie MG, Barker D, Immonen E, Kirkpatrick M, Noor M, Macias Garcia C, Schmitt T, Schilthuizen M. What do we need to know about speciation? Trends Ecol Evol, 2012, 27(1): 27-39.
doi: 10.1016/j.tree.2011.09.002 pmid: 21978464 |
[58] | Wiens JJ. What is speciation and how should we study it? Am Nat, 2004, 163(6): 914-923. |
[59] |
Tomaiuolo M, Hansen TF, Levitan DR. A theoretical investigation of sympatric evolution of temporal reproductive isolation as illustrated by marine broadcast spawners. Evolution, 2007, 61(11): 2584-2595.
pmid: 17927777 |
[60] |
Jezkova T, Wiens JJ. Testing the role of climate in speciation: new methods and applications to squamate reptiles (lizards and snakes). Mol Ecol, 2018, 27(12): 2754-2769.
doi: 10.1111/mec.14717 pmid: 29779234 |
[61] | Nanda P, Singh BN. Behavioural reproductive isolation and speciation in Drosophila. J Biosci, 2012, 37(2): 359-374. |
[62] | Kamimura Y, Mitsumoto H. Lock-and-key structural isolation between sibling Drosophila species. Entomol Sci, 2012, 15(2): 197-201. |
[63] | Ludlow AM, Magurran AE. Gametic isolation in guppies (Poecilia reticulata). Proc Biol Sci, 2006, 273(1600): 2477-2482. |
[64] |
Rosser N, Queste LM, Cama B, Edelman NB, Mann F, Mori Pezo R, Morris J, Segami C, Velado P, Schulz S, Mallet JLB, Dasmahapatra KK. Geographic contrasts between pre- and postzygotic barriers are consistent with reinforcement in Heliconius butterflies. Evolution, 2019, 73(9): 1821-1838.
doi: 10.1111/evo.13804 pmid: 31334832 |
[65] | Rometsch SJ, Torres-Dowdall J, Meyer A. Evolutionary dynamics of pre- and postzygotic reproductive isolation in cichlid fishes. Philos Trans R Soc Lond B Biol Sci, 2020, 375(1806): 20190535. |
[66] | Coyne JA, Orr HA. Speciation. Sunderland, MA: Sinauer Associates Inc, 2004. |
[67] | Powell DL, Payne C, Banerjee SM, Keegan M, Bashkirova E, Cui R, Andolfatto P, Rosenthal GG, Schumer M. The genetic architecture of variation in the sexually selected sword ornament and its evolution in hybrid populations. Curr Biol, 2021, 31(5): 923-935.e11. |
[68] | Moran BM, Payne CY, Powell DL, Iverson ENK, Donny AE, Banerjee SM, Langdon QK, Gunn TR, Rodriguez- Soto RA, Madero A, Baczenas JJ, Kleczko KM, Liu F, Matney R, Singhal K, Leib RD, Hernandez-Perez O, Corbett-Detig R, Frydman J, Gifford C, Schartl M, Havird JC, Schumer M. A lethal mitonuclear incompatibility in complex I of natural hybrids. Nature, 2024, 626(7997): 119-127. |
[69] | Bateson B. William Bateson, Naturalist:Heredity and Variation in Modern Lights. Cambridge: Cambridge University Press, 2009, 215-232. |
[70] | Dobzhansky T. Genetics and the Origin of Species. New York: Columbia University Press, 1937. |
[71] |
Maheshwari S, Barbash DA. The genetics of hybrid incompatibilities. Annu Rev Genet, 2011, 45: 331-355.
doi: 10.1146/annurev-genet-110410-132514 pmid: 21910629 |
[72] | Tang SW, Presgraves DC. Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities. Science, 2009, 323(5915): 779-782. |
[73] | Presgraves DC, Balagopalan L, Abmayr SM, Orr HA. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature, 2003, 423(6941): 715-719. |
[74] |
Barbash DA, Siino DF, Tarone AM, Roote J. A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc Natl Acad Sci USA, 2003, 100(9): 5302-5307.
doi: 10.1073/pnas.0836927100 pmid: 12695567 |
[75] | Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang X, Barbash DA. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science, 2006, 314(5803): 1292-1295. |
[76] |
Masly JP, Jones CD, Noor MAF, Locke J, Orr HA. Gene transposition as a cause of hybrid sterility in Drosophila. Science, 2006, 313(5792): 1448-1450.
pmid: 16960009 |
[77] | Cooper JC, Lukacs A, Reich S, Schauer T, Imhof A, Phadnis N. Altered localization of hybrid incompatibility proteins in Drosophila. Mol Biol Evol, 2019, 36(8): 1783-1792. |
[78] |
Sawamura K, Yamamoto MT, Watanabe TK. Hybrid lethal systems in the Drosophila melanogaster species complex. II. The zygotic hybrid rescue (Zhr) gene of D. melanogaster. Genetics, 1993, 133(2): 307-313.
doi: 10.1093/genetics/133.2.307 pmid: 8436277 |
[79] | Cattani MV, Presgraves DC. Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species. Genetics, 2012, 191(2): 549-559. |
[80] |
Ting CT, Tsaur SC, Wu ML, Wu CI. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science, 1998, 282(5393): 1501-1504.
pmid: 9822383 |
[81] | Liénard MA, Araripe LO, Hartl DL. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids. Proc Natl Acad Sci USA, 2016, 113(29): E4200-E4207. |
[82] |
Phadnis N. Genetic architecture of male sterility and segregation distortion in Drosophila pseudoobscura Bogota-USA hybrids. Genetics, 2011, 189(3): 1001-1009.
doi: 10.1534/genetics.111.132324 pmid: 21900263 |
[83] |
Powell DL, García-Olazábal M, Keegan M, Reilly P, Du K, Díaz-Loyo AP, Banerjee S, Blakkan D, Reich D, Andolfatto P, Rosenthal GG, Schartl M, Schumer M. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Science, 2020, 368(6492): 731-736.
doi: 10.1126/science.aba5216 pmid: 32409469 |
[84] |
Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science, 2009, 323(5912): 373-375.
doi: 10.1126/science.1163601 pmid: 19074312 |
[85] |
Forejt J, Jansa P, Parvanov E. Hybrid sterility genes in mice (Mus musculus): a peculiar case of PRDM9 incompatibility. Trends Genet, 2021, 37(12): 1095-1108.
doi: 10.1016/j.tig.2021.06.008 pmid: 34238593 |
[86] | Mukaj A, Piálek J, Fotopulosova V, Morgan AP, Odenthal-Hesse L, Parvanov ED, Forejt J. Prdm9 intersubspecific interactions in hybrid male sterility of house mouse. Mol Biol Evol, 2020, 37(12): 3423-3438. |
[87] |
Johannesson K. Parallel speciation: a key to sympatric divergence. Trends Ecol Evol, 2001, 16(3): 148-153.
pmid: 11179579 |
[88] | Wang ZF, Jiang YZ, Yang XY, Bi H, Li JL, Mao XX, Ma YZ, Ru DF, Zhang C, Hao GQ, Wang J, Abbott RJ, Liu JQ. Molecular signatures of parallel adaptive divergence causing reproductive isolation and speciation across two genera. Innovation (Camb), 2022, 3(3): 100247. |
[89] |
Butlin RK. Recombination and speciation. Mol Ecol, 2005, 14(9): 2621-2635.
pmid: 16029465 |
[90] | Bastide H, López-Villavicencio M, Ogereau D, Lledo J, Dutrillaux AM, Debat V, Llaurens V. Genome assembly of 3 Amazonian morpho butterfly species reveals Z-chromosome rearrangements between closely related species living in sympatry. Gigascience, 2022, 12: giad033. |
[91] | De vos JM, Augustijnen H, Bätscher L, Lucek K. Speciation through chromosomal fusion and fission in Lepidoptera. Philos Trans R Soc Lond B Biol Sci, 2020, 375(1806): 20190539. |
[92] |
Lafon-Placette C, Köhler C. Epigenetic mechanisms of postzygotic reproductive isolation in plants. Curr Opin Plant Biol, 2015, 23: 39-44.
doi: 10.1016/j.pbi.2014.10.006 pmid: 25449725 |
[93] | Michalak P. Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity (Edinb), 2009, 102(1): 45-50. |
[94] |
Berbel-Filho WM, Pacheco G, Lira MG, de Leaniz CG, Lima SMQ, Rodríguez-López CM, Zhou J, Consuegra S. Additive and non-additive epigenetic signatures of natural hybridization between fish species with different mating systems. Epigenetics, 2022, 17(13): 2356-2365.
doi: 10.1080/15592294.2022.2123014 pmid: 36082413 |
[95] |
Vernaz G, Hudson AG, Santos ME, Fischer B, Carruthers M, Shechonge AH, Gabagambi NP, Tyers AM, Ngatunga BP, Malinsky M, Durbin R, Turner GF, Genner MJ, Miska EA. Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish. Nat Ecol Evol, 2022, 6(12): 1940-1951.
doi: 10.1038/s41559-022-01894-w pmid: 36266459 |
[96] | Long Q, Yan K, Wang CD, Wen YL, Qi FR, Wang H, Shi P, Liu XG, Chan WY, Lu XM, Zhao H. Modification of maternally defined H3K4me3 regulates the inviability of interspecific Xenopus hybrids. Sci Adv, 2023, 9(14): eadd8343. |
[97] |
Niayale R, Cui Y, Adzitey F. Male hybrid sterility in the cattle-yak and other bovines: a review. Biol Reprod, 2021, 104(3): 495-507.
doi: 10.1093/biolre/ioaa207 pmid: 33185248 |
[98] |
Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ. Bmp4 and morphological variation of beaks in Darwin's finches. Science, 2004, 305(5689): 1462-1465.
doi: 10.1126/science.1098095 pmid: 15353802 |
[1] | 沈洁宇, 苏天晗, 余大奇, 谭生军, 张勇. 基因重复驱动的演化:基因组学时代的回顾与展望[J]. 遗传, 2025, 47(2): 147-171. |
[2] | 宋刚, 屈延华. 青藏高原隆升与环境变化驱动鸟类的遗传分化与物种形成[J]. 遗传, 2025, 47(1): 133-145. |
[3] | 王则夫, 刘建全. 基因组时代的物种形成研究[J]. 遗传, 2025, 47(1): 71-100. |
[4] | 张达轩, 戴沈汝, 崔银秋. 古基因组视角下的亚洲北部人群迁徙和演化机制[J]. 遗传, 2025, 47(1): 34-45. |
[5] | 平婉菁, 薛家旸, 付巧妹. 古DNA解析东亚南北方人群的迁徙与演化历史[J]. 遗传, 2025, 47(1): 18-33. |
[6] | 鲍艳春, 石彩霞, 张传强, 谷明娟, 朱琳, 刘在霞, 周乐, 马凤英, 娜日苏, 张文广. 深度学习在基因组学中的研究进展[J]. 遗传, 2024, 46(9): 701-715. |
[7] | 胡玉龙, 杨芳, 陈彦潼, 谌烁楷, 闫煜博, 张跃博, 吴晓林, 汪加明, 何俊, 高宁. 整合mRNA转录本与基因组信息的基因组选择方法研究[J]. 遗传, 2024, 46(7): 560-569. |
[8] | 唐恒磊, 郑树涛, 李友, 钟望涛. 心源性卒中的遗传学研究进展[J]. 遗传, 2024, 46(5): 373-386. |
[9] | 高林豫, 许琦, 何钰霄, 习海娇, 刘一帆, 张涛, 李金泉, 张燕军, 王瑞军, 吕琦, 梅步俊, 苏蕊, 王志英. 基于多性状模型内蒙古绒山羊早期生长性状基因组预测准确性研究[J]. 遗传, 2024, 46(5): 421-430. |
[10] | 张傲, 岑山, 李晓宇. N6-腺苷甲基化修饰及其对LINE-1的调控机制[J]. 遗传, 2024, 46(3): 209-218. |
[11] | 刘羽诚, 申妍婷, 田志喜. 大豆泛基因组研究进展[J]. 遗传, 2024, 46(3): 183-198. |
[12] | 郑慧怡, 吴华煊, 杜志强. 肠道宏基因组图像增强和深度学习改善代谢性疾病分类预测精度[J]. 遗传, 2024, 46(10): 886-896. |
[13] | 杨青鑫, 王萌鸽, 刘超, 袁慧军, 何光林. 基于祖先重组图重建古今人类群体遗传系谱的研究进展及展望[J]. 遗传, 2024, 46(10): 849-859. |
[14] | 徐晓鹏, 范小英. 单细胞精度的表达数量性状位点研究进展[J]. 遗传, 2024, 46(10): 795-806. |
[15] | 梁羽, 吴薇. 基于高通量测序的DNA损伤及修复检测技术研究进展[J]. 遗传, 2024, 46(10): 779-794. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: