遗传 ›› 2025, Vol. 47 ›› Issue (5): 533-545.doi: 10.16288/j.yczz.24-358
王占春1,2(), 钟桂涛1, 张贝贝1, 谢怡琳1, 唐定中1(
), 王伟1(
)
收稿日期:
2024-12-16
修回日期:
2025-02-05
出版日期:
2025-05-20
发布日期:
2025-02-24
通讯作者:
唐定中,博士,教授,研究方向:植物与病原菌互作。E-mail: dztang@fafu.edu.cn;作者简介:
王占春,博士后,研究方向:水稻抗病育种。E-mail: zhanchunwang@foxmail.com
基金资助:
Zhanchun Wang1,2(), Guitao Zhong1, Beibei Zhang1, Yilin Xie1, Dingzhong Tang1(
), Wei Wang1(
)
Received:
2024-12-16
Revised:
2025-02-05
Published:
2025-05-20
Online:
2025-02-24
Supported by:
摘要:
水稻(Oryza sativa L.)是我国重要的粮食作物,其生长发育过程经常受到稻瘟病的威胁,严重时导致巨大的经济损失。挖掘和利用水稻稻瘟病抗性基因,培育具有广谱抗性的优良品种是目前防治稻瘟病最经济有效的方法。稻瘟病抗性基因一般为编码含有核苷酸结合结构域(nucleotide-binding,NB)和富含亮氨酸重复结构域(leucine-rich repeat,LRR)的基因家族,也被叫做NLR基因,在水稻抗稻瘟病方面发挥至关重要的作用。因此,对NLR基因的挖掘以及阐明其与对应效应因子之间的识别和激活机制,对于培育抗病品种具有重要意义。本文对水稻中NLR基因的挖掘概况、NLR蛋白与稻瘟病菌效应因子之间的识别方式,以及成对NLR蛋白作用机制进行了总结和展望,旨在为水稻抗病育种提供参考。
王占春, 钟桂涛, 张贝贝, 谢怡琳, 唐定中, 王伟. 水稻稻瘟病抗性基因研究进展[J]. 遗传, 2025, 47(5): 533-545.
Zhanchun Wang, Guitao Zhong, Beibei Zhang, Yilin Xie, Dingzhong Tang, Wei Wang. Research advances in rice blast resistance genes[J]. Hereditas(Beijing), 2025, 47(5): 533-545.
表1
水稻中已克隆的NLR基因"
NLR基因 | 年份 | 染色体 | 供体 | 参考文献 |
---|---|---|---|---|
Pi37 | 2007 | 1 | St. No. 1 | [ |
Pish | 2010 | 1 | 日本晴 | [ |
Pit | 2010 | 1 | K59 | [ |
Pi35 | 2014 | 1 | Hokkai 188 | [ |
Pi64 | 2015 | 1 | 羊毛谷 | [ |
Pit1 | 2024 | 1 | K59 | [ |
Pit2 | 2024 | 1 | K59 | [ |
Pib | 1999 | 2 | IR24, BL1 | [ |
Pib-Kr | 2015 | 2 | Krengosa | [ |
Pib-Sr | 2015 | 2 | Sercher | [ |
Pi-63 | 2014 | 4 | Kahei | [ |
PiRP1 | 2020 | 4 | 日本晴 | [ |
Piz-t | 2006 | 6 | Zenith | [ |
Pi9 | 2006 | 6 | 75-1-127 | [ |
Pi2 | 2006 | 6 | Jefferson | [ |
Pid-3 | 2009 | 6 | 地谷 | [ |
Pi-25 | 2011 | 6 | 谷梅2号 | [ |
Pi50 | 2012 | 6 | Er-Ba-zhan (EBZ) | [ |
Pid3-A4 | 2013 | 6 | A4 (普通野生稻) | [ |
Pid3-11/W3/W4 | 2014 | 6 | Kasalath/Oryza rufipogon (100920/106046) | [ |
Pigm | 2017 | 6 | 谷梅4号 | [ |
Pid4 | 2018 | 6 | 地谷 | [ |
Pizh | 2019 | 6 | ZH11 | [ |
Pi9-Type3/4/5/6/9/10/11 | 2020 | 6 | HCIH/PIIB/XS209/YD4038/THAVALU/ZWH210/R03138 | [ |
Pi-36 | 2007 | 8 | Q61 | [ |
PibH8 | 2024 | 8 | ZH11 | [ |
BRG8 | 2024 | 8 | Tetep | [ |
Pi-5/Pi-3/Pii | 2009 | 9 | Tetep | [ |
Pii | 2013 | 9 | Hitomebore | [ |
Pi56 | 2013 | 9 | 三黄占2号 | [ |
LABR_64 | 2013 | 9 | 301279/312007 | [ |
Pi-CO39 | 2002 | 11 | CO39 | [ |
Pik-m | 2008 | 11 | Tsuyuake | [ |
Pb1 | 2010 | 11 | Modan | [ |
Pi54 | 2011 | 11 | Tetep | [ |
Pik | 2011 | 11 | Kusabue | [ |
Pik-p | 2011 | 11 | K60 | [ |
Pi-1 | 2012 | 11 | LAC (根茎稻) | [ |
Pi54rh | 2012 | 11 | nrcpb 002 | [ |
Pi54of | 2014 | 11 | nrcpb 004 | [ |
Pik-h | 2014 | 11 | K3 | [ |
Pike | 2015 | 11 | 籼早143 | [ |
Pia | 2016 | 11 | Aichi Asahi | [ |
Pikx | 2019 | 11 | NSFTV-131 | [ |
Pikg | 2021 | 11 | Oryza rufipogon accession G9 | [ |
Piks | 2022 | 11 | IRBLks-F5 | [ |
Pb2 | 2022 | 11 | Jiangnanwan | [ |
Pias | 2022 | 11 | WRC17 | [ |
Pikps | 2023 | 11 | Shoni | [ |
OsBRW1 | 2024 | 11 | C105TTP-4L-23 | [ |
Pita | 2000 | 12 | Yashiro-mochi | [ |
Pijx | 2023 | 12 | XS134 | [ |
[1] |
Liu WD, Liu JL, Triplett L, Leach JE, Wang GL. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol, 2014, 52(1): 213-241.
pmid: 24906128 |
[2] |
Pennisi E. Armed and dangerous. Science, 2010, 327(5967): 804-805.
pmid: 20150482 |
[3] |
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol, 2012, 13(4): 414-430.
pmid: 22471698 |
[4] |
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol, 2012, 13(6): 614-629.
pmid: 22672649 |
[5] |
Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan HQ, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li WX, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434(7036): 980-986.
pmid: 15846337 |
[6] |
Deng YW, Zhai KR, Xie Z, Yang DY, Zhu XD, Liu JZ, Wang X, Qin P, Yang YZ, Zhang GM, Li Q, Zhang JF, Wu SQ, Milazzo J, Mao BZ, Wang ET, Xie HA, Tharreau D, He ZH. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355(6328): 962-965.
pmid: 28154240 |
[7] |
Joned JDG, Dangl JL. The plant immune system. Nature, 2006, 444(7117): 323-329.
pmid: 17108957 |
[8] |
Wang W, Feng BM, Zhou JM, Tang DZ. Plant immune signaling: advancing on two frontiers. J Integr Plant Biol, 2020, 62(1): 2-24.
pmid: 31846204 |
[9] |
Ngou BPM, Ding PT, Jones JDG. Channeling plant immunity. Cell, 2021, 184(13): 3358-3360.
pmid: 34171318 |
[10] |
Yuan MH, Ngou BPM, Ding PT, Xin XF. PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol, 2021, 62: 102030.
pmid: 33684883 |
[11] |
Yuan MH, Jiang ZY, Bi GZ, Nomura K, Liu MH, Wang YP, Cai BY, Zhou JM, He SY, Xin XF. Pattern- recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592(7852): 105-109.
pmid: 33692546 |
[12] |
Monteiro F, Nishimura MT. Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu Rev Phytopathol, 2018, 56: 243-267.
pmid: 29949721 |
[13] | Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep, 2023, 24(10): e57495. |
[14] |
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans, 2023, 51(4): 1473-1483.
pmid: 37602936 |
[15] |
Liu Y, Zhang YM, Tang Y, Chen JQ, Shao ZQ. The evolution of plant NLR immune receptors and downstream signal components. Curr Opin Plant Biol, 2023, 73: 102363.
pmid: 37602488 |
[16] |
Devanna BN, Jain P, Solanke AU, Das A, Thakur S, Singh PK, Kumari M, Dubey H, Jaswal R, Pawar D, Kapoor R, Singh J, Arora K, Saklani BK, AnilKumar C, Maganti SM, Sonah H, Deshmukh R, Rathour R, Sharma TR. Understanding the dynamics of blast resistance in rice-Magnaporthe oryzae interactions. J Fungi (Basel), 2022, 8(6): 584.
pmid: 37094492 |
[17] |
Huang YY, Li Y, Wang H, Wang WM. Allelic variation in the race-specific blast resistance genes in rice. Acta Phytopathol Sinica, 2023, 53(5): 753-768.
pmid: 35736067 |
[18] |
Kou YJ, Shi HB, Qiu JH, Tao Z, Wang WM. Effectors and environment modulating rice blast disease: from understanding to effective control. Trends Microbiol, 2024, 32(10): 1007-1020.
pmid: 38580607 |
[19] |
Zeng XS, Yang XF, Zhao ZH, Lin F, Wang L, Pan QH. Characterization and fine mapping of the rice blast resistance gene Pia. Sci China Life Sci, 2011, 54(4): 372-378.
pmid: 21373980 |
[20] |
Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19(1): 55-64.
pmid: 10417726 |
[21] |
Liu G, Lu G, Zeng L, Wang GL. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics, 2002, 267(4): 472-480.
pmid: 12111554 |
[22] |
Deng YW, Zhu XD, Shen Y, He ZH. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet, 2006, 113(4): 705-713.
pmid: 16832648 |
[23] |
Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2010, 189(1): 321-334.
pmid: 21118257 |
[24] |
Zhao HJ, Wang XY, Jia YL, Minkenberg B, Wheatley M, Fan JB, Jia MH, Famoso A, Edwards JD, Wamishe Y, Valent B, Wang GL, Yang YN. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun, 2018, 9(1): 2039.
pmid: 29795191 |
[25] |
Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12(11): 2033-2046.
pmid: 11090207 |
[26] | Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet, 2000, 100(7): 1121-1128. |
[27] | Jia YL, Wang ZH, Singh P. Development of dominant rice blast Pi-ta resistance gene markers. Crop Sci, 2002, 42(6): 2145-2149. |
[28] |
Xiao G, Laksanavilat N, Cesari S, Lambou K, Baudin M, Jalilian A, Telebanco-Yanoria MJ, Chalvon V, Meusnier I, Fournier E, Tharreau D, Zhou B, Wu J, Kroj T. The unconventional resistance protein PTR recognizes the Magnaporthe oryzae effector AVR-Pita in an allele- specific manner. Nat Plants, 2024, 10(6): 994-1004.
pmid: 38834685 |
[29] |
Wu Y, Xu WY, Zhao GY, Lei ZY, Li K, Liu JY, Huang SJ, Wang JL, Zhong XB, Yin X, Wang YD, Zhang HC, He Y, Ye ZA, Meng YG, Chang XY, Lin H, Wang X, Gao YY, Chai JJ, Parker JE, Deng YW, Zhang Y, Gao MJ, He ZH. A canonical protein complex controls immune homeostasis and multipathogen resistance. Science, 2024, 386(6728): 1405-1412.
pmid: 39509474 |
[30] |
Lin F, Chen S, Que ZQ, Wang L, Liu XQ, Pan QH. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177(3): 1871-1880.
pmid: 17947408 |
[31] |
Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10: 175.
pmid: 20707904 |
[32] |
Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 7(3): 413-425.
pmid: 18808453 |
[33] | Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto S, Matsumoto T, Yano M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep, 2014, 4: 4550. |
[34] |
Ma J, Lei CL, Xu XT, Hao K, Wang JL, Cheng ZJ, Ma XD, Ma J, Zhou KN, Zhang X, Guo XP, Wu FQ, Lin QB, Wang CM, Zhai HQ, Wang HY, Wan JM. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microbe Interact, 2015, 28(5): 558-568.
pmid: 25650828 |
[35] |
Li YY, Wang Q, Jia HM, Ishikawa K, Kosami KI, Ueba T, Tsujimoto A, Yamanaka M, Yabumoto Y, Miki D, Sasaki E, Fukao Y, Fujiwara M, Kaneko-Kawano T, Tan L, Kojima C, Wing RA, Sebastian A, Nishimura H, Fukada F, Niu QF, Shimizu M, Yoshida K, Terauchi R, Shimamoto K, Kawano Y. An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function. Nat Commun, 2024, 15(1): 4610.
pmid: 38816417 |
[36] |
Ramkumar G, Madhav MS, Devi SJS, Prasad MS, Babu VR. Nucleotide variation and identification of novel blast resistance alleles of Pib by allele mining strategy. Physiol Mol Biol Plants, 2015, 21(2): 301-304.
pmid: 25964723 |
[37] | Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang CJ. Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed, 2014, 34: 691-700. |
[38] |
Liu MH, Kang HX, Xu YC, Peng Y, Wang D, Gao LJ, Wang XL, Ning YS, Wu J, Liu WD, Li CY, Liu B, Wang GL. Genome-wide association study identifies an NLR gene that confers partial resistance to Magnaporthe oryzae in rice. Plant Biotechnol J, 2020, 18(6): 1376-1383.
pmid: 31742855 |
[39] |
Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19(11): 1216-28.
pmid: 17073304 |
[40] |
Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172(3): 1901-1914.
pmid: 16387888 |
[41] |
Shang JJ, Tao Y, Chen XW, Zou Y, Lei CL, Wang J, Li XB, Zhao XF, Zhang MJ, Lu ZK, Xu JC, Cheng ZK, Wan JM, Zhu LH. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site--leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009, 182(4): 1303-1311.
pmid: 19506306 |
[42] |
Xu X, Lv QM, Shang JJ, Pang ZQ, Zhou ZZ, Wang J, Jiang GH, Tao Y, Xu Q, Li XB, Zhao XF, Li SG, Xu JC, Zhu LH. Excavation of Pid3 orthologs with differential resistance spectra to Magnaporthe oryzae in rice resource. PLoS One, 2014, 9(3): e93275.
pmid: 24681716 |
[43] |
Chen J, Shi YF, Liu WZ, Chai RY, Fu YP, Zhuang JY, Wu JL. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011, 38(5): 209-216.
pmid: 21621742 |
[44] |
Su J, Wang WJ, Han JL, Chen S, Wang CY, Zeng LX, Feng AQ, Yang JY, Zhou B, Zhu XY. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet, 2015, 128(11): 2213-2225.
pmid: 26183036 |
[45] |
Lv QM, Xu X, Shang JJ, Jiang GH, Pang ZQ, Zhou ZZ, Wang J, Liu Y, Li T, Li XB, Xu JC, Cheng ZK, Zhao XF, Li SG, Zhu LH. Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology, 2013, 103(6): 594-599.
pmid: 23384860 |
[46] |
Chen ZX, Zhao W, Zhu XB, Zou CD, Yin JJ, Chern M, Zhou XG, Ying H, Jiang X, Li YZ, Liao HC, Cheng MP, Li WT, He M, Wang J, Wang JC, Ma BT, Wang JR, Li SG, Zhu LH, Chen XW. Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. J Genet Genomics, 2018, 45(12): 663-672.
pmid: 30606471 |
[47] |
Xie Z, Yan BX, Shou JY, Tang J, Wang X, Zhai KR, Liu JY, Li Q, Luo MZ, Deng YW, He ZH. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1767): 20180308.
pmid: 30967012 |
[48] |
Zhou Y, Lei F, Wang Q, He WC, Yuan B, Yuan WY. Identification of novel alleles of the rice blast-resistance gene Pi9 through sequence-based allele mining. Rice (N Y), 2020, 13(1): 80.
pmid: 33284383 |
[49] |
Liu XQ, Lin F, Wang L, Pan QH. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176(4): 2541-2549.
pmid: 38687884 |
[50] |
Wang ZC, Yang DW, Zhong GT, Li SP, Wang W, Tang DZ. Nucleotide-binding leucine-rich repeat receptor homologs Pib and PibH8 interact and contribute to immunity in rice. Plant Physiol, 2024, 195(4): 3010-3023.
pmid: 38687884 |
[51] |
Xu SL, Wei XH, Yang QQ, Hu DX, Zhang YY, Yuan XP, Kang FY, Wu ZZ, Yan ZQ, Luo XQ, Sun YF, Wang S, Feng Y, Xu Q, Zhang MC, Yang YL. A KNOX II transcription factor suppresses the NLR immune receptor BRG8-mediated immunity in rice. Plant Commun, 2024, 5(10): 101001.
pmid: 38863209 |
[52] |
Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics, 2009, 181(4): 1627-1638.
pmid: 19153255 |
[53] |
Vo KTX, Lee SK, Halane MK, Song MY, Hoang TV, Kim CY, Park SY, Jeon J, Kim ST, Sohn KH, Jeon JS. Pi5 and Pii paired NLRs are functionally exchangeable and confer similar disease resistance specificity. Mol Cells, 2019, 42(9): 637-645.
pmid: 31564075 |
[54] |
Liu Y, Liu B, Zhu XY, Yang JY, Bordeos A, Wang GL, Leach JE, Leung H. Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet, 2013, 126(4): 985-998.
pmid: 23400829 |
[55] |
Kang HX, Wang Y, Peng SS, Zhang YL, Xiao YH, Wang D, Qu SH, Li ZQ, Yan SY, Wang ZL, Liu WD, Ning Y, Korniliev P, Leung H, Mezey J, McCouch SR, Wang GL. Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae. Mol Plant Pathol, 2016, 17(6): 959-972.
pmid: 26574735 |
[56] |
Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel JB, Fournier E, Tharreau D, Terauchi R, Kroj T. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 2013, 25(4): 1463-1481.
pmid: 23548743 |
[57] |
Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu JZ, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180(4): 2267-2276.
pmid: 18940787 |
[58] |
Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64(3): 498-510.
pmid: 20807214 |
[59] | Rai AK, Kumar SP, Gupta SK, Gautam N, Singh NK, Sharma TR. Functional complementation of rice blast resistance gene Pi-kh(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J Plant Biochem Biotechnol, 2011, 20: 55-65. |
[60] |
Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122(5): 1017-1028.
pmid: 21153625 |
[61] |
Hua LX, Wu JZ, Chen CX, Wu WH, He XY, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan QH. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125(5): 1047-1055.
pmid: 22643901 |
[62] |
Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics, 2012, 12(2): 215-228.
pmid: 22592658 |
[63] |
Devanna NB, Vijayan J, Sharma TR. The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One, 2014, 9(8): e104840.
pmid: 25111047 |
[64] |
Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong ZQ, Wang L, Pan QH. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One, 2014, 9(6): e98067.
pmid: 24896089 |
[65] | Chen J, Peng P, Tian JS, He YG, Zhang LP, Liu ZX, Yin DD, Zhang ZH. Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol Breeding, 2015, 35(5): 305. |
[66] |
Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66(3): 467-479.
pmid: 21251109 |
[67] |
Li CG, Wang D, Peng SS, Chen Y, Su P, Chen JB, Zheng LM, Tan XQ, Liu JL, Xiao YH, Kang HX, Zhang DY, Wang GL, Liu Y. Genome-wide association mapping of resistance against rice blast strains in South China and identification of a new Pik allele. Rice (N Y), 2019, 12(1): 47.
pmid: 31309315 |
[68] |
Meng F, He YG, Chen J, Long X, Wang H, Zhu MH, Liu SJ, Cai Q, Zhang ZH. Analysis of natural variation of the rice blast resistance gene Pike and identification of a novel allele Pikg. Mol Genet Genomics, 2021, 296(4): 939-952.
pmid: 33966102 |
[69] |
Xiao G, Wang WJ, Liu MX, Li Y, Liu JB, Franceschetti M, Yi ZF, Zhu XY, Zhang ZG, Lu GD, Banfield MJ, Wu J, Zhou B. The Piks allele of the NLR immune receptor Pik breaks the recognition of AvrPik effectors of rice blast fungus. J Integr Plant Biol, 2023, 65(3): 810-824.
pmid: 36178632 |
[70] |
Yu Y, Ma L, Wang XY, Zhao Z, Wang W, Fan YX, Liu KQ, Jiang TT, Xiong ZW, Song QS, Li CQ, Wang PT, Ma WJ, Xu HN, Wang XY, Zhao ZJ, Wang JF, Zhang HS, Bao YM. Genome-wide association study identifies a rice panicle blast resistance gene, Pb2, encoding NLR protein. Int J Mol Sci, 2022, 23(10): 5668.
pmid: 35628477 |
[71] |
Shimizu M, Hirabuchi A, Sugihara Y, Abe A, Takeda T, Kobayashi M, Hiraka Y, Kanzaki E, Oikawa K, Saitoh H, Langner T, Banfield MJ, Kamoun S, Terauchi R. A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc Natl Acad Sci USA, 2022, 119(27): e2116896119.
pmid: 35771942 |
[72] |
Kovi B, Sakai T, Abe A, Kanzaki E, Terauchi R, Shimizu M. Isolation of Pikps, an allele of Pik, from the aus rice cultivar Shoni. Genes Genet Syst, 2023, 97(5): 229-235.
pmid: 36624071 |
[73] |
Ma SW, Xu SC, Tao H, Huang YX, Feng CQ, Huang GP, Lin SK, Sun YQ, Chen X, Fabrice Kabore MA, Tareke Woldegiorgis S, Ai YF, Zhang LN, Liu W, He HQ. OsBRW1, a novel blast-resistant gene, coded a NBS-LRR protein to interact with OsSRFP1 to balance rice growth and resistance. Plant Biotechnol J, 2025, 23(1): 250-267.
pmid: 39492591 |
[74] |
Xiao N, Wu YY, Zhang XX, Hao ZY, Chen ZC, Yang ZF, Cai Y, Wang RY, Yu L, Wang ZP, Lu Y, Shi W, Pan CH, Li YH, Zhou CH, Liu JJ, Huang NS, Liu GQ, Ji HJ, Zhu SH, Fang S, Ning YS, Li AH. Pijx confers broad- spectrum seedling and panicle blast resistance by promoting the degradation of ATP β subunit and OsRbohC-mediated ROS burst in rice. Mol Plant, 2023, 16(11): 1832-1846.
pmid: 37798878 |
[75] |
Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CIA, Ayliffe MA, Kobe B, Ellis JG. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA, 2006, 103(23): 8888-8893.
pmid: 16731621 |
[76] |
Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, Ellis JG. The melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell, 2004, 16(3): 755-768.
pmid: 14973158 |
[77] |
Ray S, Singh PK, Gupta DK, Mahato AK, Sarkar C, Rathour R, Singh NK, Sharma TR. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Front Plant Sci, 2016, 7: 1140.
pmid: 27551285 |
[78] |
Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826-833.
pmid: 11459065 |
[79] |
van der Hoorn RA, Kamoun S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell, 2008, 20(8): 2009-2017.
pmid: 18723576 |
[80] |
Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem, 2010, 285(37): 28902-28911.
pmid: 20610395 |
[81] |
Wang YJ, Li JF, Hou SG, Wang XW, Li Y, Ren DT, Chen S, Tang XY, Zhou JM. A Pseudomonas syringae ADP- ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell, 2010, 22(6): 2033-2044.
pmid: 20571112 |
[82] |
Mackey D, Holt BF 3rd, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 2002, 108(6): 743-754.
pmid: 11955429 |
[83] |
Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc Natl Acad Sci USA, 2005, 102(18): 6496-6501.
pmid: 15845764 |
[84] |
Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D. The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc Natl Acad Sci USA, 2010, 107(5): 2349-2354.
pmid: 20133879 |
[85] |
Chung EH, da Cunha L, Wu AJ, Gao ZY, Cherkis K, Afzal AJ, Mackey D, Dangl JL. Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. Cell Host Microbe, 2011, 9(2): 125-136.
pmid: 21320695 |
[86] |
Liu J, Elmore JM, Lin ZJD, Coaker G. A receptor- like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe, 2011, 9(2): 137-146.
pmid: 21320696 |
[87] |
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: from discovery to deployment. Cell, 2024, 187(9): 2095-2116.
pmid: 38670067 |
[88] |
Toruño TY, Shen MZ, Coaker G, Mackey D. Regulated disorder: posttranslational modifications control the RIN4 plant immune signaling hub. Mol Plant Microbe Interact, 2019, 32(1): 56-64.
pmid: 30418084 |
[89] |
Park CH, Chen SB, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning YS, Wang RY, Bellizzi M, Valent B, Wang GL. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24(11): 4748-4762.
pmid: 23204406 |
[90] |
Park CH, Shirsekar G, Bellizzi M, Chen SB, Songkumarn P, Xie X, Shi XT, Ning YS, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang GL. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathog, 2016, 12(3): e1005529.
pmid: 27031246 |
[91] |
Wang RY, Ning YS, Shi XT, He F, Zhang CY, Fan JB, Jiang N, Zhang Y, Zhang T, Hu YJ, Bellizzi M, Wang GL. Immunity to rice blast disease by suppression of effector-triggered necrosis. Curr Biol, 2016, 26(18): 2399-2411.
pmid: 27641772 |
[92] |
Shi XT, Xiong YH, Zhang K, Zhang YS, Zhang JQ, Zhang LL, Xiao YT, Wang GL, Liu WD. The ANIP1-OsWRKY62 module regulates both basal defense and Pi9-mediated immunity against Magnaporthe oryzae in rice. Mol Plant, 2023, 16(4): 739-755.
pmid: 36872602 |
[93] |
Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J, 2014, 33(17): 1941-1959.
pmid: 25024433 |
[94] |
Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R. The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Mol Plant Microbe Interact, 2013, 26(4): 407-418.
pmid: 23216085 |
[95] |
Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang XX, Ellis JG, Kobe B, Dodds PN. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self- association, signaling, and autoregulation. Cell Host Microbe, 2011, 9(3): 200-211.
pmid: 21402359 |
[96] |
Bentham AR, Zdrzalek R, De la Concepcion JC, Banfield MJ. Uncoiling CNLs: structure/function approaches to understanding CC domain function in plant NLRs. Plant Cell Physiol, 2018, 59(12): 2398-2408.
pmid: 30192967 |
[97] |
van Wersch S, Li X. Stronger when together: clustering of plant NLR disease resistance genes. Trends Plant Sci, 2019, 24(8): 688-699.
pmid: 31266697 |
[98] |
Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericsson DJ, Casey LW, Lonhienne T, Winzor DJ, Zhang XX, Coerdt A, Parker JE, Dodds PN, Kobe B, Jones JDG. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science, 2014, 344(6181): 299-303.
pmid: 24744375 |
[99] |
Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, Wirthmueller L, Menke FLH, Sohn KH, Jones JDG. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell, 2015, 161(5): 1089-1100.
pmid: 26000484 |
[100] |
Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J, 2012, 72(6): 894-907.
pmid: 22805093 |
[101] |
Longya A, Chaipanya C, Franceschetti M, Maidment JHR, Banfield MJ, Jantasuriyarat C. Gene duplication and mutation in the emergence of a novel aggressive allele of the AVR-Pik effector in the rice blast fungus. Mol Plant Microbe Interact, 2019, 32(6): 740-749.
pmid: 30601714 |
[102] |
Müller DJ, Gaub HE. Membrane proteins scrambling through a folding landscape. Science, 2017, 355(6328): 907-908.
pmid: 28254899 |
[103] |
Zhai KR, Deng YW, Liang D, Tang J, Liu J, Yan BX, Yin X, Lin H, Chen FD, Yang DY, Xie Z, Liu JY, Li Q, Zhang L, He ZH. RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice. Mol Cell, 2019, 74(5): 996-1009.e7.
pmid: 30975460 |
[104] |
Xi YX, Cesari S, Kroj T. Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays Biochem, 2022, 66(5): 513-526.
pmid: 35735291 |
[105] |
Maidment JHR, Shimizu M, Bentham AR, Vera S, Franceschetti M, Longya A, Stevenson CEM, De la Concepcion JC, Białas A, Kamoun S, Terauchi R, Banfield MJ. Effector target-guided engineering of an integrated domain expands the disease resistance profile of a rice NLR immune receptor. Elife, 2023, 12: e81123.
pmid: 37199729 |
[106] |
Guo LW, Cesari S, de Guillen K, Chalvon V, Mammri L, Ma MQ, Meusnier I, Bonnot F, Padilla A, Peng YL, Liu JF, Kroj T. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc Natl Acad Sci USA, 2018, 115(45): 11637-11642.
pmid: 30355769 |
[107] |
Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroj T. Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5. Plant Cell, 2017, 29(1): 156-168.
pmid: 28087830 |
[108] |
Xie YJ, Wang YP, Yu XZ, Lin YL, Zhu YS, Chen JW, Xie HG, Zhang QQ, Wang LN, Wei YD, Xiao YJ, Cai QH, Zheng YM, Wang M, Xie HA, Zhang JF. SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice. Mol Plant, 2022, 15(12): 1931-1946.
pmid: 36321201 |
[109] |
Kawano Y, Akamatsu A, Hayashi K, Housen Y, Okuda J, Yao A, Nakashima A, Takahashi H, Yoshida H, Wong HL, Kawasaki T, Shimamoto K. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity. Cell Host Microbe, 2010, 7(5): 362-375.
pmid: 20478538 |
[110] |
Liu Y, Zhang X, Yuan GX, Wang DL, Zheng YY, Ma MQ, Guo LW, Bhadauria V, Peng YL, Liu JF. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc Natl Acad Sci USA, 2021, 118(44): e2110751118.
pmid: 34702740 |
[111] |
Zhang X, Liu Y, Yuan GX, Wang SW, Wang DL, Zhu TT, Wu XF, Ma MQ, Guo LW, Guo HL, Bhadauria V, Liu JF, Peng YL. The synthetic NLR RGA5HMA5 requires multiple interfaces within and outside the integrated domain for effector recognition. Nat Commun, 2024, 15(1): 1104.
pmid: 38321036 |
[112] |
Zdrzałek R, Xi YX, Langner T, Bentham AR, Petit-Houdenot Y, De la Concepcion JC, Harant A, Shimizu M, Were V, Talbot NJ, Terauchi R, Kamoun S, Banfield MJ. Bioengineering a plant NLR immune receptor with a robust binding interface toward a conserved fungal pathogen effector. Proc Natl Acad Sci USA, 2024, 121(28): e2402872121.
pmid: 38968126 |
[113] |
Zhai KR, Liang D, Li HL, Jiao FY, Yan BX, Liu J, Lei ZY, Huang L, Gong XY, Wang X, Miao JS, Wang YC, Liu JY, Zhang L, Wang E, Deng YW, Wen CK, Guo HW, Han B, He ZH. NLRs guard metabolism to coordinate pattern and effector-triggered immunity. Nature, 2022, 601(7892): 245-251.
pmid: 34912119 |
[1] | 吴岳阳, 周小燕, 吴玉峰, 黄驹. NMD途径功能缺陷对水稻表型及转录组的影响[J]. 遗传, 2024, 46(7): 540-551. |
[2] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[3] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[4] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[5] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[6] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[7] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[8] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[9] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[10] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[11] | 闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[12] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[13] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[14] | 张沥元, 黄芙静, 许峻旗, 龚真, 谢建平. 结核分枝杆菌酸抗性基因及其调控网络[J]. 遗传, 2018, 40(7): 546-560. |
[15] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: