[1] Meister A. A brief history of glutathione and a survey of its metabolism and functions. In: Dolphin ID, Poulson R, Avramovic O. Glutathione, chemical, biochemical, and medical aspects. John Wiley and Sons, 1989. New York, 1–48.
[2] Yuan L, Kaplowitz N. Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med, 2009, 30(1–2): 29–41.
[3] Biswas S, Rahman I, Environmental toxicity, redox sig-naling and lung inflammation: the role of glutathione. Mol Aspects Med, 2009, 30(1–2): 60–76.
[4] Kannan R, Yi JR, Tang D, Li Y, Zlokovic BV, Kaplowitz N. Evidence for the existence of a sodium-dependent glu-tathione (GSH) transporter. Expression of bovine brain capillary mRNA and size fractions in Xenopus laevis oo-cytes and dissociation from γ-glutamyltranspeptidase and facilitative GSH transporters. J Biol Chem, 1996, 271(16): 9754–9758.
[5] Jamai A, Martinoia E, Delrot S. Characterization of glu-tathione uptake in broad bean leaf protoplasts. Plant Physiol, 1996, 111(4): 1145–1152.
[6] Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem, 1996, 271(11): 6509–6517.
[7] Bourbouloux A, Chakladar A, Delrot S, Bachhawat AH, Shahi P. Hgt1p, a high affinity glutathione transporter from yeast Saccharomyces cerevisiae. J Biol Chem, 2000, 275(18): 13259–13265.
[8] Fahey R, Brown W, Adams W, Worsham M. Occurrence of glutathione in bacteria. J Bacteriol, 1978, 133(3): 1126–1129.
[9] Suzuki H, Kumagai H, Tochikura T. Isolation, genetic mapping, and characterization of Escherichia coli K-12 mutants lacking γ-glutamyltranspeptidase. J Bacteriol, 1987, 169(9): 3926–3931.
[10] Owens RA, Hartman PE. Export of glutathione by some widely used Salmonella typhimurium and Escherichia coli strains. J Bacteriol, 1986, 168(1): 109–114.
[11] Suzuki H, Hashimoto W, Kumagai H. Escherichia coli K-12 can utilize an exogenous γ-glutamyl peptide as an amino acid source, for which γ-glutamyltranspeptidase is essential. J Bacteriol, 1993, 175(18): 6038–6040. [12] Suzuki H, Kamatani S, Kim ES, Kumagai H. Aminopep-tidases A, B, and N and dipeptidase D are the four cys-teinylglycinases of Escherichia coli K-12. J Bacteriol, 2001, 183(4): 1489–1490.
[13] Hideyuki S, Takashi K, Shunsuke I, Akiko O, Hidehiko K. The yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette. J Bacteriol, 2005, 187(17): 5861–5867. [14] Keseler IM, Bonavides-Martínez C, Collado-Vides J, Gama-Castro S, Gunsalus RP, Johnson DA, Krum-menacker M, Nolan LM, Paley S, Paulsen IT, Peralta-Gil M, Santos-Zavaleta A, Shearer AG, Karp PD. EcoCyc: A comprehensive view of Escherichia coli Biology. Nucleic Acids Res, 2009, 37: 464–470.
[15] Geoffrey SW, Blake MS, Joel B, Thomas CT. Rapid pro-tein-folding assay using green fluorescent protein. Nature Biotechnol, 1999, 17: 691–695.
[16] 白帆, 刘珣, 张义正. 一种新的基因克隆方法SLIC的可靠性分析. 四川大学学报(自然科学版), 2008, 45(增刊): 33–36.
[17] Mamie Z L, Stephen JE. Harnessing homologous recom-bination in vitro to generate recombinant DNA via SLIC. Nat Methods, 2007, 3(4): 251–256.
[18] Kay T. Overview of bacterial expression systems for het-erologous protein production: from molecular and bio-chemical fundamentals to commercial systems. Appl Mi-crobiol Biotechnol, 2006, 72: 211–222.
[19] David D, Mirjam L, Edmund K, Dirk JS, Jan WG. Opti-mization of membrane protein overexpression and purifi-cation using GFP fusions. Nat Mothods, 2006, 3(4): 303–313. |