[1] Lucchesi JC, Kelly WG, Panning B. Chromatin remodeling in dosage compensation. Annu Rev Genet, 2005, 39(1): 615-651.[2] Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, Dudko OK, Malley JD, Eastman PS, Oliver B. Global analysis of X-chromosome dosage compensation. J Biol, 2006, 5: 3.[3] Horabin JI, Schedl P. Regulated splicing of the Drosophila sex-lethal male exon involves a blockage mechanism. Mol Cell Biol, 1993, 13(3): 1408-1414.[4] Kelley RL, Wang JW, Bell L, Kuroda MI. Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature, 1997, 387(6629): 195-199.[5] Mukherjee AS, Beermann W. Synthesis of ribonucleic acid by the X-chromosomes of Drosophila melanogaster and the problem of dosage compensation. Nature, 1965, 207(998): 785-786.[6] Belote JM, Lucchesi JC. Control of X-chromosome transcription by the maleless gene in Drosophila. Nature, 1980, 285(5766): 573-575.[7] Hilfiker A, HilfikerKleiner D, Pannuti A, Lucchesi JC. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J, 1997, 16(8): 2054-2060.[8] Kuroda MI, Gelbart ME. Drosophila dosage compensation: a complex voyage to the X chromosome. Development, 2009, 136(9): 1399-1410.[9] Kuroda MI, Copps K, Richman R, Lyman LM, Chang KA, Rampersad-Ammons J. Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. EMBO J, 1998, 17(18): 5409-5417.[10] Scott MJ, Li F, Parry DAD. The amino-terminal region of Drosophila MSL1 contains basic, glycine-rich, and leucine zipper-like motifs that promote X chromosome binding, self-association, and MSL2 binding, respectively. Mol Cell Biol, 2005, 25(20): 8913-8924.[11] Scott MJ, Pan LL, Cleland SB, Knox AL, Heinrich J. MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J, 2000, 19(1): 144-155.[12] Akhtar A, Kadlec J, Hallacli E, Lipp M, Holz H, Sanchez-Weatherby J, Cusack S. Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1. Nat Struct Mol Biol, 2011, 18(2): 142-149.[13] Li F, Schiemann AH, Scott MJ. Incorporation of the noncoding roX RNAs alters the chromatin-binding specificity of the Drosophila MSL1/MSL2 complex. Mol Cell Biol, 2008, 28(8): 1256-1264.[14] Becker PB, Fauth T, Muller-Planitz F, Konig C, Straub T. The DNA binding CXC domain of MSL2 is required for faithful targeting the dosage compensation complex to the X chromosome. Nucleic Acids Res, 2010, 38(10): 3209-3221.[15] Straub T, Becker PB. Transcription modulation chromosome-wide: universal features and principles of dosage compensation in worms and flies. Curr Opin Genet Dev, 2011, 21(2): 147-153.[16] Peterson CL, Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 2006, 311(5762): 844-847.[17] Scott MJ, Schiemann AH, Weake VM, Li F, Laverty C, Belikoff EJ. The importance of location and orientation of male specific lethal complex binding sites of differing affinities on reporter gene dosage compensation in Drosophila. Biochem Bioph Res Co, 2010, 402(4): 699-704.[18] Johansen KM, Jin Y, Wang YM, Walker DL, Dong H, Conley C, Johansen J. JIL-1: A novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell, 1999, 4(1): 129-135.[19] Johansen KM, Jin Y, Wang YM, Johansen J. JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol, 2000, 149(5): 1005-1010.[20] Johansen KM, Le |