[1] Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170.[2] Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010, 465 (1-2): 30-44.[3] Hu RB, Qi GA, Kong YZ, Kong DJ, Gao QA, Zhou GK. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol, 2010, 10: 145.[4] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9(6): 841-857.[5] Zhong RQ, Richardson EA, Ye ZH. The MYB46 tran-scription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell, 2007, 19(9): 2776-2792.[6] Guo Y, Cai Z, Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ, 2004, 27(5): 521-549.[7] Guo YF, Gan SS. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46(4): 601-612.[8] Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103(35): 12987-12992.[9] Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51(4): 617-630.[10] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314(5803): 1298-1301.[11] Bu QY, Jiang HL, Li CB, Zhai QZ, Zhang J, Wu XQ, Sun JQ, Xie Q, Li CY. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res, 2008, 18(7): 756-767.[12] Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9(4): 436-442.[13] Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell, 2005, 17(1): 311-325.[14] Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress toler-ance in rice. Mol Genet Genomics, 2010, 284(3): 173-183.[15] He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J, 2005, 44(6): 903-916.[16] Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 2009, 323(5917): 1053-1057.[17] Balazadeh S, Wu AH, Mueller-Roeber B. Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signal Behav, 2010, 5(6): 733-735.[18] Shao SQ, Li BY, Zhang ZT, Zhou Y, Jiang J, Li XB. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling. J Genet Genom, 2010, 37(12): 805-816.[19] Goldberg RB, Beals TP, Sanders PM. Anther development: basic principles and practical applications. Plant Cell, 1993, 5(10): 1217-1229.[2 |