[1] Li JS. Production, breeding and process of maize in China. In: Bennetzen JL, Hake SC, eds. Handbook of Maize: Its Biology. New York: Springer, 2009: 563-576.
[2] Zhang SH, Bonjean APA. Maize breeding and production in China. In: He ZH, Bonjean APA, eds. Cereals in China. CIMMYT, Mexico, D. F., Mexico, 2010: 35-49.
[3] Ci XK, Li MS, Liang XL, Xie ZJ, Zhang DG, Li XH, Lu ZY, Ru GL, Bai L, Xie CX, Hao ZF, Zhang SH. Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci, 2011, 51(1): 13-20.
[4] 孙世贤. 我国杂交玉米品种推广与成效. 作物杂志, 2010, (3): 121-124.
[5] 王绍新, 郭贵峰, 冯健英, 张国良. 郑单958的价值及改良. 河北农业科学, 2010, 14(2): 65-66.
[6] 张世煌. 郑单958带给我们的创新思路和发展机遇. 玉米科学, 2006, 14(6): 4-6.
[7] 王小星, 马丽, 王秀萍, 李潮海. 郑单958近缘组合的农艺性状分析. 玉米科学, 2008, 16(1): 104-107.
[8] Dudley JW. Modification of methods for identifying populations to be used for improving parents of elite sin-gle crosses. Crop Sci, 1987, 27(5): 940-943.
[9] Gerloff JE, Smith OS. Choice of method for identifying germplasm with superior alleles. Theor Appl Genet, 1988, 76(2): 209-216.
[10] Hallauer AR, Miranda Filho JB. Quantitative genetics in maize breeding. 2nd ed. Ames: Iowa State University Press, 1988.
[11] Bernardo R. Identifying populations useful for improving parents of a single cross based on net transfer of alleles. Theor Appl Genet, 1990, 80(3): 349-352.
[12] Dudley JW. Evaluation of maize populations as sources of favorable alleles. Crop Sci, 1988, 28(3): 486-491.
[13] Kraja A, Dudley JW. Identification of tropical and temperate maize populations having favorable alleles for yield and other phenotypic traits. Crop Sci, 2000, 40(4): 941-947.
[14] Taller JM, Bernardo R. Diverse adapted populations for improving northern maize inbreds. Crop Sci, 2004, 44(4): 1441-1449.
[15] Stojšin D, Kannenberg LW. Evaluation of maize popula-tions as sources of favorable alleles for improvement of two single-cross hybrids. Crop Sci, 1995, 35(5): 1353-1359.
[16] Rodríguez VM, Malvar RA, Butrón A, Ordás A, Revilla P. Maize populations as sources of favorable alleles to im-prove cold-tolerant hybrids. Crop Sci, 2007, 47(5): 1779-1786.
[17] Trifunovi? S, Husi? I, Rošulj M, Stojšin R. Evaluation of U.S. and Yugoslavian maize populations as sources of fa-vorable alleles. Crop Sci, 2001, 41(2): 302-308.
[18] Incognito SJP, Eyhérabide GH, Bertoia LM, López CG. Breeding potential of elite maize landraces to improve forage yield and quality of two heterotic patterns. Crop Sci, 2013, 53(1): 121-131.
[19] Yong HJ, Wang JJ, Liu ZP, Li MS, Zhang DG, Li XH, Zhang SH. Potential of tropical maize populations for improving an elite maize hybrid. Maydica, 2011, 56(4): 359-366.
[20] SAS Institute. SAS System for Windows. Version 9.1.3. Cary: SAS Inst., Inc., 2009.
[21] Zar JH. Biostatistical analysis. Englewood Cliffs: Prentice Hall Inc., 1974: 130-133.
[22] Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Essex: Longman Group Ltd., 1996.
[23] Ding JQ, Ma JL, Zhang CR, Dong HF, Xi ZY, Xia ZL, Wu JY. QTL Mapping for test weight by using F2: 3 population in maize. J Genet, 2011, 90(1): 75-80.
[24] Helm JL, Paez AV, Loesch PJ, Zuber MS. Test weight in high-amylose corn. Crop Sci, 1971, 11(1): 75-77.
[25] 杨爱国, 张世煌, 李明顺, 荣廷昭, 潘光堂. CIMMYT和我国玉米种质群体的配合力及杂种优势分析. 作物学报, 2006, 32(9): 1329-1337. |