遗传 ›› 2014, Vol. 36 ›› Issue (3): 228-236.doi: 10.3724/SP.J.1005.2014.0228
李灵, 宋旭
收稿日期:
2013-09-29
修回日期:
2013-11-21
出版日期:
2014-03-20
发布日期:
2014-02-25
通讯作者:
宋旭, 博士, 教授, 研究方向:长链非编码RNA。E-mail: xusong@scu.edu.cn
E-mail:xusong@scu.edu.cn
作者简介:
李灵, 博士, 讲师, 研究方向:长链非编码RNA。Tel: 028-85418926; E-mail: lingli1980@scu.edu.cn
基金资助:
国家重点基础研究发展计划(973计划)项目(编号:2011CB504203), 国家自然科学基金项目(编号:31000579; 31371325), 四川省创新团队发展计划项目(编号:2011JTD0026)和教育部新世纪优秀人才支持计划(编号:NCET-10-0599)资助
Ling Li, Xu Song
Received:
2013-09-29
Revised:
2013-11-21
Online:
2014-03-20
Published:
2014-02-25
摘要:
长链非编码RNA(Long non-coding RNA, lncRNA)的发现是基因组学和分子生物学研究领域的重要进展。lncRNA在生命活动中具有重要的调节功能, 其表达紊乱与多种人类疾病的发生发展密切相关。研究表明, 几乎所有的调控性lncRNA通过与不同种类的生物大分子, 如DNA、RNA和蛋白质发生相互作用而行使其功能。文章概述了lncRNA在表观遗传学水平、转录水平及转录后水平调控基因表达的效应机制, 并探讨了lncRNA如何在肿瘤发生和宿主防御过程中行使功能。不同于小分子ncRNA通过碱基互补配对调控靶基因的表达, 大多数已鉴定的lncRNA通过调节蛋白质活性或维持蛋白质复合物的完整性发挥其生物学功能。因此, 鉴定lncRNA-蛋白质相互作用可能是理解lncRNA功能的首要任务。
李灵, 宋旭. 长链非编码RNA在生物体中的调控作用[J]. 遗传, 2014, 36(3): 228-236.
Ling Li, Xu Song. In vivo functions of long non-coding RNAs[J]. HEREDITAS, 2014, 36(3): 228-236.
[1] ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146): 799– 816. <\p> [2] Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642–655. <\p> [3] Liu HJ, Wang XR, Wang HD, Wu JJ, Ren J, Meng LF, Wu QF, Dong HS, Wu J, Kao TY, Ge Q, Wu ZX, Yuh CH, Shan G. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat Commun, 2012, 3: 1073. <\p> [4] Yu FY, Yao HR, Zhu P, Zhang XC, Pan QH, Gong C, Huang YJ, Hu XQ, Su FX, Lieberman J, Song E. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131(6): 1109–1123. <\p> [5] Zhang L, Hou DX, Chen X, Li DH, Zhu LY, Zhang YJ, Li J, Bian Z, Liang XY, Cai X, Yin Y, Wang C, Zhang TF, Zhu DH, Zhang DM, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen JQ, Wang J, Wang M, Zhang QP, Zhang JF, Zen K, Zhang CY. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regu-lation by microRNA. Cell Res, 2012, 22(1): 107–126. <\p> [6] Zhao S, Gou LT, Zhang M, Zu LD, Hua MM, Hua Y, Shi HJ, Li Y, Li JS, Li DS, Wang ED, Liu MF. piRNA-triggered MIWI ubiquitination and removal by APC/C in late spermatogenesis. Dev Cell, 2013, 24(1): 13–25. <\p> [7] Wang Y, Chen J, Wei G, He H, Zhu X, Xiao T, Yuan J, Dong B, He S, Skogerb G, Chen R. The Caenorhabditis elegans intermediate-size transcriptome shows high de-gree of stage-specific expression. Nucleic Acids Res, 2011, 39(12): 5203–5214. <\p> [8] Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235): 223–227. <\p> [9] Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 2011, 147(7): 1537–1550. <\p> [10] Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of transla-tional research? Oncogene, 2012, 31(43): 4577–4587. <\p> [11] Tsai MC, Spitale RC, Chang HY. Long intergenic non-coding RNAs: new links in cancer progression. Cancer Res, 2011, 71(1): 3–7. <\p> [12] McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg- Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC. A common allele on chromosome 9 associated with coronary heart disease. Science, 2007, 316(5830): 1488– 1491. <\p> [13] Johnson R. Long non-coding RNAs in Huntington’s dis-ease neurodegeneration. Neurobiol Dis, 2012, 46(2): 245– 254. <\p> [14] Tan L, Yu JT, Hu N, Tan L. Non-coding RNAs in Alz-heimer’s disease. Mol Neurobiol, 2013, 47(1): 382–393. <\p> [15] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136 (4): 629–641. <\p> [16] Du Toit A. Non-coding RNA: RNA stability control by Pol II. Nat Rev Mol Cell Biol, 2013, 14(3): 128. <\p> [17] Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR. Transcrip-tional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308(5725): 1149–1154. <\p> [18] Goodrich JA, Kugel JF. Dampening DNA binding: a common mechanism of transcriptional repression for both ncRNAs and protein domains. RNA Biol, 2010, 7(3): 305– 309. <\p> [19] Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Non-coding RNA gas5 is a growth arrest- and starva-tion-associated repressor of the glucocorticoid receptor. Sci Signal, 2010, 3(107): ra8. <\p> [20] Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Na-ture, 2007, 445(7128): 666–670. <\p> [21] Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differetiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2): 358–369. <\p> [22] Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR. RNA maps reveal new RNA classes and a possible function for per-vasive transcription. Science, 2007, 316(5830): 1484–1488. <\p> [23] Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and lgf1r. Nat Cell Biol, 2012, 14(7): 659–665. <\p> [24] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet, 2009, 10(3): 155–159. <\p> [25] Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011, 43(6): 904–914. <\p> [26] Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K, Frith MC, Gongora MM, Grimmond SM, Hume DA, Hayashizaki Y, Mattick JS. Experimental validation of the regualted expression of large nunmbers of non-coding RNAs from the mouse ge-nome. Genome Res, 2006, 16(1): 11–19. <\p> [27] Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013, 152(6): 1298–1307. <\p> [28] Guil S, Esteller M. Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol, 2012, 19 (11): 1068–1075. <\p> [29] Lee JT. Epigenetic regulation by long noncoding RNAs. Science, 2012, 338(6113): 1435–1439. <\p> [30] Rinn JL, Chang HY. Genome regulation by long noncod-ing RNAs. Annu Rev Biochem, 2012, 81: 145–166. <\p> [31] Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI. Epigenetic spreading of the Drosophila dos-age compensation complex from roX RNA genes into flanking chromatin. Cell, 1999, 98(4): 513–522. <\p> [32] Koziol MJ, Rinn JL. RNA traffic control of chromatin complexes. Curr Opin Genet Dev, 2010, 20(2): 142–148. <\p> [33] Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM. Elongation of Kcnq1ot1 transcript is re-quired for genomic imprinting of neighboring genes. Genes Dev, 2006, 20(10): 1268–1282. <\p> [34] Fitzpatrick GV, Soloway PD, Higgins MJ. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet, 2002, 32(3): 426–431. <\p> [35] Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage- specific transcriptional silencing through chromatin-level regulation. Mol Cell, 2008, 32(2): 232–246. <\p> [36] Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncod-ing RNAs. Cell, 2007, 129(7): 1311–1323. <\p> [37] Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 2008, 322(5908): 1717–1720. <\p> [38] Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Sci-ence, 2010, 329(5992): 689–693. <\p> [39] Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291): 1071–1076. <\p> [40] Mohammad F, Pandey GK, Mondal T, Enroth S, Redrup L, Gyllensten U, Kanduri C. Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development, 2012, 139(15): 2792–2803. <\p> [41] Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/ cyclin T complexes. Nature, 2001, 414(6861): 322–325. <\p> [42] Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell, 2006, 23(3): 297– 305. <\p> [43] Yang Z, Zhu Q, Luo K, Zhou Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control tran-scription. Nature, 2001, 414(6861): 317–322. <\p> [44] Song X, Wang B, Bromberg M, Hu Z, Konigsberg W, Garen A. Retroviral-mediated transmission of a mouse VL30 RNA to human melanoma cells promotes metastasis in an immunodeficient mouse model. Proc Natl Acad Sci USA, 2002, 99(9): 6269–6273. <\p> [45] Song X, Sui A, Garen A. Binding of mouse VL30 retrotransposon RNA to PSF protein induces genes repressed by PSF: effects on steroidogenesis and oncogenesis. Proc Natl Acad Sci USA, 2004, 101(2): 621–626. <\p> [46] Song X, Sun Y, Garen A. Roles of PSF protein and VL30 RNA in reversible gene regulation. Proc Natl Acad Sci USA, 2005, 102(34): 12189–12193. <\p> [47] Wang G, Cui Y, Zhang G, Garen A, Song X. Regulation of proto-oncogene transcription, cell proliferation, and tumorigenesis in mice by PSF protein and a VL30 noncoding RNA. Proc Natl Acad Sci USA, 2009, 106(39): 16794–16798. <\p> [48] Li L, Feng T, Lian Y, Zhang G, Garen A, Song X. Role of human noncoding RNAs in the control of tumorigenesis. Proc Natl Acad Sci USA, 2009, 106(31): 12956–12961. <\p> [49] Lanz RB, Razani B, Goldberg AD, O'Malley BW. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci USA, 2002, 99(25): 16081–16086. <\p> [50] Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. RNA-mediated response to heat shock in mammalian cells. Nature, 2006, 440(7083): 556–560. <\p> [51] Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ul-traconserved region and functions as a Dlx-2 transcrip-tional coactivator. Genes Dev, 2006, 20(11): 1470–1484. <\p> [52] Bertani S, Sauer S, Bolotin E, Sauer F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell, 2011, 43(6): 1040–1046. <\p> [53] Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature, 2013, 494(7438): 497–501. <\p> [54] Allen TA, Von Kaenel S, Goodrich JA, Kugel JF. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nature Struct Mol Biol, 2004, 11(9): 816–821. <\p> [55] Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell, 2008, 29(4): 499–509. <\p> [56] Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F, Triller A, Spector DL, Bessis A. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J, 2010, 29(18): 3082–3093. <\p> [57] Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV. The nuclear-retained non-coding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010, 39(6): 925–938. <\p> [58] Sellier C, Rau F, Liu Y, Tassone F, Hukema RK, Gattoni R, Schneider A, Richard S, Willemsen R, Elliott DJ, Hagerman PJ, Charlet-Berguerand N. Sam68 sequestration and partial loss of function are associated with splicing alterrations in FXTAS patients. EMBO J, 2010, 29(7): 1248–1261. <\p> [59] Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384–388. <\p> [60] Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 2007, 39(8): 1033–1037. <\p> [61] Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010, 465(7301): 1033–1038. <\p> [62] Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF- induced mouse model of melanoma. Cell, 2011, 147(2): 382–395. <\p> [63] Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 2011, 147(2): 344–357. <\p> [64] Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet- Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 2011, 147(2): 370–381. <\p> [65] Wang H, Iacoangeli A, Lin D, Williams K, Denman RB, Hellen CU, Tiedge H. Dendritic BC1 RNA in translational control mechanisms. J Cell Biol, 2005, 171(5): 811–821. <\p> [66] Centonze D, Rossi S, Napoli I, Mercaldo V, Lacoux C, Ferrari F, Ciotti MT, De Chiara V, Prosperetti C, Maccarrone M, Fezza F, Calabresi P, Bernardi G, Bagni C. The brain cytoplasmic RNA BC1 regulates dopamine D2 re-ceptor-mediated transmission in the striatum. J Neurosci, 2007, 27(33): 8885–8892. <\p> [67] Lewejohann L, Skryabin BV, Sachser N, Prehn C, Heiduschka P, Thanos S, Jordan U, Dell'Omo G, Vyssotski AL, Pleskacheva MG, Lipp HP, Tiedge H, Brosius J, Prior H. Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice. Behav Brain Res, 2004, 154(1): 273–289. <\p> [68] Gong C, Maquat LE. lncRNAs transactivate stau1-mediated mRNA decay by duplexing with 3’ UTRs via alu elements. Nature, 2011, 470(7333): 284–288. <\p> [69] Pibouin L, Villaudy J, Ferbus D, Muleris M, Prospéri MT, Remvikos Y, Goubin G. Cloning of the mRNA of overex-pression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet, 2002, 133(1): 55–60. <\p> [70] Fu X, Ravindranath L, Tran N, Petrovics G, Srivastava S. Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol, 2006, 25(3): 135–141. <\p> [71] Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Müller-Tidow C. MALAT- 1, a novel noncodng RNA, and thymosin beta4 predict metstasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22(39): 8031–8041. <\p> [72] Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. Molecular inter-play of the noncoding RNA ANRIL and methylated his-tone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010, 38(5): 662–674. <\p> [73] Lane DP, Fischer PM. Turning the key on p53. Nature, 2004, 427(6977): 789–790. <\p> [74] Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature, 2004, 432(7015): 307–315. <\p> [75] Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature, 2000, 408(6810): 307–310. <\p> [76] Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B. Identification and classification of p53- regulated genes. Proc Natl Acad Sci USA, 1999, 96(25): 14517–14522. <\p> [77] Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ. Analysis of p53-regulated gene expression patterns using oligonucleo-tide arrays. Genes Dev, 2000, 14(8): 981–993. <\p> [78] Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature, 1995, 377(6549): 552–557. <\p> [79] Suzuki HI, Miyazono K. Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway. J Mol Med (Berl), 2010, 88(11): 1085– 1094. <\p> [80] Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142(3): 409–419. <\p> [81] Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerød A, Børresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY. Extensive and coordinated tran-scription of noncoding RNAs within cell-cycle promoters. Nat Genet, 2011, 43(7): 621–629. <\p> [82] Zhang AL, Zhou NJ, Huang JG, Liu Q, Fukuda K, Ma D, Lu ZH, Bai CX, Watabe K, Mo YY. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res, 2013, 23(3): 340–350. <\p> [83] Peng X, Gralinski L, Armour CD, Ferris MT, Thomas MJ, Proll S, Bradel-Tretheway BG, Korth MJ, Castle JC, Biery MC, Bouzek HK, Haynor DR, Frieman MB, Heise M, Raymond CK, Baric RS, Katze MG. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. MBio, 2010, 1(5): E00206–E00210. <\p> [84] Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-g locus. Cell, 2013, 152(4): 743–754. <\p> [85] Medzhitov R, Horng T. Transcriptional control of the in-flammatory response. Nat Rev Immunol, 2009, 9(10): 692–703. <\p> [86] Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, Byron M, Monks B, Henry-Bezy M, Lawrence JB, O’Neill LA, Moore MJ, Caffrey DR, Fitzgerald KA. A long noncoding RNA mediates both activation and repression of immune response genes. Science, 2013, 341(6147): 789–792. <\p> |
[1] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[2] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[3] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[4] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[5] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[6] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[7] | 李迎侠, 张婷婷, 马磊. 天然嵌合基因的结构特性及其对基因设计的启示[J]. 遗传, 2018, 40(2): 135-144. |
[8] | 徐宗昌,孔英珍. 普通烟草CESA基因家族成员的鉴定、亚细胞定位及表达分析[J]. 遗传, 2017, 39(6): 512-524. |
[9] | 施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[10] | 魏凯,马磊. 高通量测序时代下持家基因定义的发展[J]. 遗传, 2017, 39(2): 127-134. |
[11] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[12] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[13] | 崔婷婷, 邢天宇, 褚衍凯, 李辉, 王宁. PPARγ在脂肪生成中的遗传和表观遗传调控[J]. 遗传, 2017, 39(11): 1066-1077. |
[14] | 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-856. |
[15] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: