遗传 ›› 2019, Vol. 41 ›› Issue (6): 548-563.doi: 10.16288/j.yczz.19-084
邢万金
收稿日期:
2019-03-27
修回日期:
2019-05-13
出版日期:
2019-06-20
发布日期:
2019-05-27
作者简介:
邢万金,博士,教授,研究方向:细胞分子生物学。E-mail:xwanjin@imu.edu.cn
基金资助:
Xing Wanjin
Received:
2019-03-27
Revised:
2019-05-13
Published:
2019-06-20
Online:
2019-05-27
Supported by:
摘要:
基因结构和表达调控机制是现代生命科学的研究热点和焦点。乳糖操纵子是大肠杆菌(Escherichia coli)分解代谢乳糖的一簇基因,其基因组成与表达调控方式是最早被阐明的基因结构与调控机制,因而成为微生物学、遗传学和分子生物学等多门专业课程讲解基因调控机制的经典教学案例和要求重点掌握的内容,备受师生们的重视。该知识点虽然结论简单,记忆容易,但由于触及生命结构与功能的核心机制,内涵丰富,逻辑深奥,理解困难。教师要充分发挥该教学案例的效果并非易事,需要深入了解乳糖操纵子的基因结构和工作原理,特别是科学家揭秘这些奥秘的科学背景和思维过程。本文通过回溯大肠杆菌乳糖操纵子发现和表达模式解析的历程,追随J. Monod和F. Jacob等前辈名家的脚印,聆听他们对实验结果的分析,学习他们的科研思想和创新思维,结合乳糖操纵子的DNA序列,深入分析和理解乳糖操纵子表达的若干奇特现象的原因,共同探讨如何充分发挥遗传学和分子生物学经典案例的教学价值。
本文勘误:见 遗传, 2024, Vol. 46 (12): 1078.
邢万金. 乳糖操纵子模型的建立与教学中若干问题的解析[J]. 遗传, 2019, 41(6): 548-563.
Xing Wanjin. The establishment process of lac operon model and the analysis of several teaching problems[J]. Hereditas(Beijing), 2019, 41(6): 548-563.
图6
大肠杆菌乳糖操纵子的组成结构及其调控原理 大肠杆菌乳糖操纵子由紧密连锁的3个结构基因lacZ (编码β-半乳糖苷酶)、lacY (编码透性酶)和lacA (编码硫代半乳糖苷转乙酰酶),以及位于紧邻结构基因上游的2个调控元件,lacP (启动子)和lacO (操纵区)组成。它们共同受临近上游的一个调节基因lacI (编码阻遏物)的控制。A:当培养基中无乳糖时,阻遏物与lacO结合,阻止RNA聚合酶(RNAP)与lacP结合。RNAP不能转录结构基因。B:当培养基中有乳糖时,进入细胞内的乳糖(实际上转变为异乳糖)与阻遏物结合,使阻遏物不能再与lacO结合,RNAP可以与lacP结合,转录结构基因。"
图7
大肠杆菌乳糖操纵子的调控区序列特点 序列来自GenBank LN832404。基因上方的数字是各基因起始密码到终止密码的核苷酸序号,下面的数字是对应区段的长度(核苷酸数)。小写字母表示编码区的碱基,大写字母表示上一个基因的终止密码至下一个基因的起始密码之间的碱基。4个启动子的核心元件分别用-35(c) -10(c)、-35(2) -10(2)、-35(3) -10(3)和-35(1) -10(1)表示。双下划线和方框内字母表示启动子的-35 box和-10 box序列,虚下划线表示lacO1、lacO2和lacO3及CAP-cAMP结合位点的回文序列,波浪下划线表示SD序列。箭头下面的序列是lacI基因的终止子(lacIt),其转录物能形成右侧的茎环结构。"
[1] | Xing WJ Mo rigen, . Cultivating the scientific research ability of undergraduate students in teaching of genetics. Hereditas (Beijing), 2016,38(11):1030-1038. |
邢万金, 莫日根 . 在遗传学课堂教学中培养本科生科研素质. 遗传, 2016,38(11):1030-1038. | |
[2] | Xing WJ, Morigen. Su HM . An exploration for research-oriented teaching model in biology teaching. Hereditas (Beijing), 2014,36(7):732-738. |
邢万金, 莫日根, 苏慧敏 . 生物学教学中研究型教学方法与内容的探索. 遗传, 2014,36(7):732-738.
doi: 10.3724/SP.J.1005.2014.0732 |
|
[3] | Morigen, Xing WJ, Fan LF, Ha da, Hasi A . Teaching practice of molecular biology in a scientific story-directed. J Biol, 2016,33(5):112-116. |
莫日根, 邢万金, 范丽菲, 哈达, 哈斯阿古拉 . 科学史引导的分子生物学教学架构和实践. 生物学杂志, 2016,33(5):112-116. | |
[4] | Wortmann J . Untersuchungen über das diastatische ferment der bacterien. Hoppe-Seyler's Z. Physiol. Chem, 1882,6(4-5):287-329. |
[5] | Duclaux E . Traité de Microbiologie: Diastases, Toxines et venins, Vol. II. Masson et Cie, 1899. |
[6] | Karström H . Über die enzymbildung in bakterien und Über einige physiologische Eigenschaften der untersuchten Bakterien. Ann Acad Sci Fen A, 1930,33:2. |
[7] | Karström H . Enzymatische adaptation bei mikroorganismen. Ergebnisse der Enzymforschung, 1938,7:350-376. |
[8] |
Yudkin J . Enzyme variation in micro-organisms. Biol Rev, 1938,13(1):93-106.
doi: 10.1111/brv.1938.13.issue-1 |
[9] | Monod J . Sur un phénomène nouveau de croissance complexe dans les cultures bactériennes. CR Acad Sci(Paris), 1941,212:934-936. |
[10] | Monod J . Recherches sur la croissance des cultures bacteriennes. Paris: Hermann & Cie, 1942. |
[11] | Diénert MF . Sur la fermentation du galactose et sur l'accoutumance des levures à ce sucre. E. Charaire, 1900. |
[12] | Freeland JH. The eighth day of creation:the makers of the revolution in biology 1996. New-York: Cold Spring Harbor Laboratory Press. |
[13] |
Spiegelman S . The physiology and genetic significance of enzymatic adaptation. Annals of the Missouri Botanical Garden, 1945,32(2):139-163.
doi: 10.2307/2394254 |
[14] | Monod J . The phenomenon of enzymatic adaptation-and its bearings on problems of genetics and cellular differentiation. Growth, 1947,11(4):223-289. |
[15] | Seidman M, Link K . New Compounds. substituted salicylaldehydes and derivatives. J Am Chem Soc, 1950,72(9):4324-4324. |
[16] | Lederberg J . The beta-d-galactosidase of Escherichia coli, strain K-12. J Bacteriol, 1950,60(4):381-392. |
[17] |
Monod J, Cohen-Bazire G, Cohn M . Sur la biosynthese de la β-galactosidase (lactase) chez Escherichia coli. La specificite de l'induction. Biochim Biophys Acta, 1951,7:585-599.
doi: 10.1016/0006-3002(51)90072-8 |
[18] |
Herzenberg LA . Studies on the induction of beta-galactosidase in a cryptic strain of Escherichia coli. Biochim Biophys Acta, 1959,31(2):525-538.
doi: 10.1016/0006-3002(59)90029-0 |
[19] | Hickman M, Cairns J . The centenary of the one-gene one-enzyme hypothesis. Genetics, 2003,163(3):839-841. |
[20] | Horowitz NH . One-gene-one-enzyme: remembering biochemical genetics. Protein Sci, 1995,4(5):1017-1019. |
[21] | Monod J, Audureau A . Mutation and enzymatic adaptation in bact. coli-mutabile. Ann Inst Pasteur, 1946,72(11/12):868-878. |
[22] | Lederberg J, Tatum EL . Gene recombination in Escherichia coli. Nature, 1946,158(4016):558. |
[23] | Jacob F, Wollman E . Induction spontanée du developpement du bacteriophage lambda au cours de la recombinaison génétique chez Escherichia coli. C R Hebd Seances Acad Sci, 1954,239(3):317-319. |
[24] | Wollman EL, Jacob F . Mechanism of the transfer of genetic material during recombination in Escherichia coli K12. C R Hebd Seances Acad Sci, 1955,240(25):2449-2451. |
[25] | Cohen GN, Rickenberg HV . La galactosidepermease d'Escherichia coli. Ann Inst Pasteur, 1956,91:693-720. |
[26] |
Zabin I, Kepes A, Monod J . On the enzymic acetylation of isopropyl-β-d-thiogalactoside and its association with galactoside-permease. Biochem Biophys Res Commun, 1959,1(6):289-292.
doi: 10.1016/0006-291X(59)90040-3 |
[27] | Andrews KJ, Lin EC . Thiogalactoside transacetylase of the lactose operon as an enzyme for detoxification. J Bacteriol, 1976,128(1):510-513. |
[28] | Jacob F, Perrin D, Sánchez C, Monod J . L'opérongroupe de gènes à expression coordonnée par un opérateur. C R Hebd Seances Acad Sci, 1960,250(9):1727-1729. |
[29] |
Jacob F, Monod J . Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 1961,3:318-356.
doi: 10.1016/S0022-2836(61)80072-7 |
[30] | Adelberg E, Burns SN . Genetic variation in the sex factor of Escherichia coli. J Bacteriol, Genetics, 1960,79(3):321-330. |
[31] | Jacob F, Adelberg E . Transference of genetic properties by incorporation with the sexual factor of Escherichia coli. C R Hebd Seances Acad Sci, 1959,249(1):189-191. |
[32] | Jacob F, Schaeffer P, Wollman EL . Episomic elements in bacteria. Symp Soc Gen Microbiol, 1960,10:67-91. |
[33] |
Pardee AB, Jacob F, Monod J . The genetic control and cytoplasmic expression of “Inducibility” in the synthesis of β-galactosidase by E. coli. J Mol Biol, 1959,1(2):165-178.
doi: 10.1016/S0022-2836(59)80045-0 |
[34] |
Jacob F, Monod J . Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 1961,3(3):318-356.
doi: 10.1016/S0022-2836(61)80072-7 |
[35] | Crick FH . On protein synthesis. Symp Soc Exp Biol, 1958,12:138-163. |
[36] |
Monod J, Jacob F . Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol, 1961. 26:389-401.
doi: 10.1101/SQB.1961.026.01.048 |
[37] |
Horiuchi T, Novick A . A thermolabile repression system. Cold Spring Harb Symp Quant Biol, 1961,26:247-248.
doi: 10.1101/SQB.1961.026.01.030 |
[38] | Jacob F, Sussman R, Monod J . On the nature of the repressor ensuring the immunity of lysogenic bacteria. C R Hebd Seances Acad Sci, 1962,254:4214-4216. |
[39] |
Gilbert W, Müller-Hill B . Isolation of the lac repressor. Proc Natl Acad Sci USA, 1966,56(6):1891-1898.
doi: 10.1073/pnas.56.6.1891 |
[40] |
Changeux JP . The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harb Symp Quant Biol, 1961,26:313-318.
doi: 10.1101/SQB.1961.026.01.037 |
[41] |
Monod J, Changeux JP, Jacob F . Allosteric proteins and cellular control systems. J Mol Biol, 1963,6:306-329.
doi: 10.1016/S0022-2836(63)80091-1 |
[42] |
Burstein C, Cohn M, Kepes A, Monod J . Rôle du lactose et de ses produits métaboliques dans l'induction de l'opéron lactose chez Escherichia coli. Biochimica Et Biophysica Acta (Bba)-Nucleic Acids and Protein Synthesis, 1965,95(4):634-639.
doi: 10.1016/0005-2787(65)90517-4 |
[43] |
Mueller-Hill B, Rickenberg HV, Wallenfels K . Specificity of the induction of the enzymes of the lac operon in Escherichia coli. J Mol Biol, 1964,10:303-318.
doi: 10.1016/S0022-2836(64)80049-8 |
[44] |
Jobe A, Bourgeois S . Lac Repressor-operator interaction. VI. The natural inducer of the lac operon. J Mol Biol, 1972,69(3):397-408.
doi: 10.1016/0022-2836(72)90253-7 |
[45] | Wallenfels K, Malhotra OP . Galactosidases. Adv Carbohydr Chem, 1961,16:239-298. |
[46] |
Huber RE, Kurz G, Wallenfels K . A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. Biochemistry, 1976,15(9):1994-2001.
doi: 10.1021/bi00654a029 |
[47] |
Xiong XF, de la Cruz N, Reznikoff WS . Downstream deletion analysis of the lac promoter. J Bacteriol, 1991,173(15):4570-4577.
doi: 10.1128/jb.173.15.4570-4577.1991 |
[48] |
Krebber A, Burmester J, Plückthun A . Inclusion of an upstream transcriptional terminator in phage display vectors abolishes background expression of toxic fusions with coat protein g3p. Gene, 1996,178(1-2):71-74.
doi: 10.1016/0378-1119(96)00337-X |
[49] |
Malan TP, McClure WR . Dual promoter control of the Escherichia coli lactose operon. Cell, 1984,39(1):173-180.
doi: 10.1016/0092-8674(84)90203-4 |
[50] |
Donnelly CE, Reznikoff WS . Mutations in the lac P2 promoter. J Bacteriol, 1987,169(5):1812-1817.
doi: 10.1128/jb.169.5.1812-1817.1987 |
[51] |
Fried M, Crothers DM . Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res, 1981,9(23):6505-6525.
doi: 10.1093/nar/9.23.6505 |
[52] | Horowitz H, Platt T . A termination site for LacI transcription is between the CAP site and the lac promoter. J Biol Chem, 1982,257(19):11740-11746. |
[53] |
Gilbert W, Maxam A . The nucleotide sequence of the lac operator. Proc Natl Acad Sci USA, 1973,70(12):3581-3584.
doi: 10.1073/pnas.70.12.3581 |
[54] |
Reznikoff WS, Winter RB, Hurley CK . The location of the repressor binding sites in the lac operon. Proc Natl Acad Sci USA, 1974,71(6):2314-2318.
doi: 10.1073/pnas.71.6.2314 |
[55] |
Oehler S, Eismann ER, Krämer H, Müller-Hill B . The three operators of the lac operon cooperate in repression. Embo J, 1990,9(4):973-979.
doi: 10.1002/embj.1990.9.issue-4 |
[56] |
Kania J, Müller-Hill B . Construction, isolation and implications of repressor-galactosidase-beta-galactosidase hybrid molecules. Eur J Biochem, 1977,79(2):381-386.
doi: 10.1111/ejb.1977.79.issue-2 |
[57] |
Krämer H, Niemöller M, Amouyal M, Revet B, von Wilcken-Bergmann B, Müller-Hill B . Lac repressor forms loops with linear DNA carrying two suitably spaced lac operators. Embo J, 1987,6(5):1481-1491.
doi: 10.1002/embj.1987.6.issue-5 |
[58] |
Becker NA, Peters JP, Maher LJ 3rd, Lionberger TA . Mechanism of promoter repression by Lac repressor-DNA loops. Nucleic Acids Res, 2013,41(1):156-166.
doi: 10.1093/nar/gks1011 |
[59] |
Kepes A . Sequential transcription and translation in the lactose operon of Escherichia coli. Biochim Biophys Acta, 1967. 138(1):107-123.
doi: 10.1016/0005-2787(67)90591-6 |
[60] |
Hediger MA, Johnson DF, Nierlich DP, Zabin I . DNA sequence of the lactose operon: the lacA gene and the transcriptional termination region. Proc Natl Acad Sci USA, 1985,82(19):6414-6418.
doi: 10.1073/pnas.82.19.6414 |
[61] | Zabin I, Fowler AV . Chapter III: β -galactosidase and thiogalactoside transacetylase. CSH Monograph Archive 1970,1:27-47. |
[62] |
Kennell D, Riezman H . Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol, 1977,114(1):1-21.
doi: 10.1016/0022-2836(77)90279-0 |
[63] | de Crombrugghe B, Adhya S, Gottesman M, Pastan I . Effect of Rho on transcription of bacterial operons. Nat New Biol, 1973,241(113):260-264. |
[64] |
Lim LW, Kennel D . Evidence against transcription termination within the E. coli lac operon. Mol Gen Genet, 1974,133(4):367-371.
doi: 10.1007/BF00332713 |
[65] |
Murakawa GJ, Kwan C, Yamashita J, Nierlich DP . Transcription and decay of the lac messenger: role of an intergenic terminator. J Bacteriol, 1991,173(1):28-36.
doi: 10.1128/jb.173.1.28-36.1991 |
[66] |
Morse DE, Mosteller R, Baker RF, Yanofsky C . Direction of in vivo degradation of tryptophan messenger RNA-a correction. Nature, 1969,223(5201):40-43.
doi: 10.1038/223040a0 |
[67] |
Morikawa N, Imamoto F . Degradation of tryptophan messenger. On the degradation of messenger RNA for the tryptophan operon in Escherichia coli. Nature, 1969,223(5201):37-40.
doi: 10.1038/223037a0 |
[68] |
Morse DE, Mosteller RD, Yanofsky C . Dynamics of synthesis, translation, and degradation of trp operon messenger RNA in E. coli. Cold Spring Harb Symp Quant Biol, 1969,34:725-740.
doi: 10.1101/SQB.1969.034.01.082 |
[69] | Blundell M, Craig E, Kennell D . Decay rates of different mRNA in E. coli and models of decay. Nat New Biol, 1972,238(80):46-49. |
[70] |
Blundell M, Kennell D . Evidence for endonucleolytic attack in decay of lac messenger RNA in Escherichia coli. J Mol Biol, 1974,83(2):143-161.
doi: 10.1016/0022-2836(74)90385-4 |
[71] |
Lim LW, Kennell D . Models for decay of Escherichia coli lac messenger RNA and evidence for inactivating cleavages between its messages. J Mol Biol, 1979,135(2):369-390.
doi: 10.1016/0022-2836(79)90442-X |
[1] | 梅利斌, 张译元, 黄娴静, 纪红, 邱乒乒, 丁露, 何雪梅, 李萍. 一例手足裂畸形6型家系的致病变异鉴定及胚胎植入前遗传学检测[J]. 遗传, 2024, 46(9): 750-756. |
[2] | 田盼辉, 许玥, 张永清, 王天云. 遗传病并不一定会遗传:遗传病概念的中文翻译与建议[J]. 遗传, 2024, 46(9): 673-676. |
[3] | 林剑青, 叶绍潘, 王树启, 杜虹. 保护生物学思想在遗传学课程教学过程中的渗透[J]. 遗传, 2024, 46(7): 581-586. |
[4] | 刘岱缘, 张朝晖, 康现江. 精子染色质完整性对功能的影响及其检测方法研究进展[J]. 遗传, 2024, 46(7): 511-529. |
[5] | 毛春晓. 基于色盲遗传学教学素材的挖掘及其在教学中应用[J]. 遗传, 2024, 46(4): 346-354. |
[6] | 曹振林, 李金红, 周铭辉, 张曼婷, 王宁, 陈一飞, 李嘉欣, 祝青松, 宫雯珺, 杨绪晨, 方小龙, 和家贤, 李美娜. 大豆花药优势表达基因GmFLA22a调控雄性育性的功能研究[J]. 遗传, 2024, 46(4): 333-345. |
[7] | 朱信, 金鑫, 刘俊, 杨澜, 邹丽馨, 李彩霞, 黄江, 江丽. 基于Y-SNP和Y-STR揭示汉族人群父系遗传关系[J]. 遗传, 2024, 46(2): 149-167. |
[8] | 王艳妮, 李佳. 单细胞DNA甲基化测序数据处理流程与分析方法[J]. 遗传, 2024, 46(10): 807-819. |
[9] | 张茂, 王艳艳, 白云, 陈雪丹, 郭洪. 医学遗传学教学案例库的建设探究[J]. 遗传, 2024, 46(1): 78-87. |
[10] | 马捷, 黄露杰, 张巧霞, 朱艳, 钱露. 以A2型短指(趾)症为案例的医学遗传学PBL教学设计[J]. 遗传, 2023, 45(2): 176-183. |
[11] | 欧秀芳, 吴莹, 李宁, 姜丽丽, 刘宝, 宫磊. 基于科教融合培养大学生拔尖创新能力的表观遗传学综合实验课程[J]. 遗传, 2023, 45(12): 1158-1168. |
[12] | 李鑫, 范虹, 赵兴春, 范晓诺, 姚若侠. 基于全局最小残差法快速分析混合STR图谱[J]. 遗传, 2023, 45(10): 933-944. |
[13] | 徐思远, 寿佳, 吴强. HS5-1增强子eRNA PEARL对原钙粘蛋白α基因簇的表达调控[J]. 遗传, 2022, 44(8): 695-764. |
[14] | 谢甜, 王梅, 高瑞钰, 苗艳尼, 张燚铭, 蒋婧. 光控诱导重组系统的开发与应用[J]. 遗传, 2022, 44(8): 655-671. |
[15] | 王飞, 王萌, 张兴华, 宇克莉, 郑连斌, 杨亚军. 中国西南地区3个隔离人群遗传亚结构分析[J]. 遗传, 2022, 44(5): 424-431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: