遗传 ›› 2024, Vol. 46 ›› Issue (7): 511-529.doi: 10.16288/j.yczz.24-106
收稿日期:
2024-04-21
修回日期:
2024-06-29
出版日期:
2024-07-20
发布日期:
2024-07-05
通讯作者:
张朝晖,博士,副主任医师,研究方向:生殖医学。E-mail: zhizhi199999@163.com
作者简介:
刘岱缘,硕士研究生,专业方向:妇产科学(生殖医学)。E-mail: diana998@126.com
基金资助:
Daiyuan Liu1,2(), Zhaohui Zhang1(), Xianjiang Kang3
Received:
2024-04-21
Revised:
2024-06-29
Published:
2024-07-20
Online:
2024-07-05
Supported by:
摘要:
精子染色质不仅携带父系DNA等遗传信息,还携带有结构蛋白、表观遗传信息、高级染色质结构(如基质附着区和端粒)等众多信息, 这些信息在胚胎发育过程中均发挥着重要作用。本文主要综述了精子染色质携带的这些不同信息对精子功能和胚胎发育的影响及其相关检测方法的研究进展,以期为临床不育、胚胎停育和反复流产的病因筛查提供理论依据和科学的诊疗策略,改善自然受孕和辅助生殖助孕的妊娠结局。
刘岱缘, 张朝晖, 康现江. 精子染色质完整性对功能的影响及其检测方法研究进展[J]. 遗传, 2024, 46(7): 511-529.
Daiyuan Liu, Zhaohui Zhang, Xianjiang Kang. Research progress on the effect of sperm chromatin integrity on function and its detection methods[J]. Hereditas(Beijing), 2024, 46(7): 511-529.
图1
精子染色质结构示意图 A:精子染色质结构示意图。端粒以二聚体和四聚体的形式位于染色体两端,该结构也存在于精子染色质中。Telomeres:端粒;Chromocenters:染色质中心。B:放大的精子染色质结构模式图。红色饼环为高度压缩的PRM-DNA环;灰色球为组蛋白,灰色多球螺旋体为保留的核小体结构示意图。C:精子染色质核小体结构示意图,深蓝色线状DNA螺旋包绕在组蛋白外。D:精子DNA甲基化、DNA碎片(DNA断裂)及其影响因子示意图。ROS:活性氧;Me:DNA甲基化。E:核小体结构及其组蛋白修饰。Methylation:甲基化;Phosphorylation:磷酸化;Acetylation:乙酰化;Ubiquitination:泛素化。F:PRM环与MAR示意图。红色饼环为高度压缩的PRM-DNA环,side:侧面;TLR:环状连接区;MAR:基质附着区;Nuclear Matrix:核基质。G:端粒分子结构示意图。端粒是由非编码高度保守的串联重复DNA序列(TTAGGG)组成,在染色体末端与其他蛋白质共同构成DNA-蛋白质复合体。复合体除DNA外还包括:TRF1、TRF2、POT1、TIN2、RAP1、TPP1、TERT、TERC、Dyskerin、NOP10、NHP2和GAR1。TRF1、TRF2:端粒重复结合因子1和2(telomeric repeat binding factor 1 and 2);POT1:端粒保护蛋白1 (protection of telomeres 1);TIN2:TRF1和TRF2相互作用蛋白2 (the TRF2-and TRF1-interacting nuclear protein 2);RAP1:抑制因子/激活因子蛋白 1 (repressor/activator protein 1);TPP1:POT1和TIN2组织蛋白(POT1-TIN2 organizing protein);TERT:端粒酶反转录酶(telomerase reverse transcriptase);TERC:RNA成分(RNA component);Telomeres attrition:端粒磨损;DNA methylation:DNA甲基化;DNA fragmentation:DNA碎片;Chromatin remodeling:染色质重塑;Histone modification:组蛋白修饰。示意图在Figdraw网站(https://www.figdraw.com)绘制。"
表1
精子DNA完整性检测方法"
方法 | 检测指标 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
SCSA | 用吖啶橙进行染色,计数红色荧光精子比例 | 高效、易于标准化,有临床阈值 | 间接检测DNA损伤,敏感性低 | [ |
TUNEL | 用脱糖核苷酸标记存有断裂的DNA,至少检测200个精子 | 直接评估DNA的SSBs/DSBs,特异性高 | 耗时长,步骤复杂,需自己设置阴阳对照与阈值 | [ |
Comet assay | 精子尾部带荧光彗星样精子比例 | 直接评估DNA的SSBs/DSBs,敏感性与特异性高 | 耗时长,步骤复杂,技术人员需有较高专业知识 | [ |
SCD | 计数小或无晕精子比例 | 经济高效,准确度高,易于临床推广 | 间接评估DNA损伤,主观性强 | [ |
8-OHdG检测法 | 用酶消化DNA,分别检测8-OHd G和d G,结果以OHd G/105d G表示 | 用来辅助评估DNA氧化损伤程度 | 步骤复杂,成本高,不利于临床推广,需要技术人员有较高的专业水平 | [ |
γH2AX检测法 | 用荧光抗体标记γH2AX ,用荧光显微镜或流式细胞仪观察,计数荧光精子比例 | 结果客观,荧光显微镜能观察DNA断裂位点 | 步骤复杂,成本高,不利于临床推广,需要技术人员有较高的专业水平 | [ |
TB检测法 | 受损的DNA更易与TB染料结合,损伤越严重,染色越深,计算头部深蓝色精子比例 | 简便、快捷,适用于临床实验室推广 | 人为计数,主观性强 | [ |
拉曼光谱检测技术 | 激光照射,采集并分析光谱信号强度 | 无创检测,灵敏度高,效率高 | 需要专业仪器,需要技术人员有较高的专业水平 | [ |
ORP检测法 | 通过评估样本中的氧化剂和还原剂的比例,直接测量氧化应激程度 | 结果重复性高 | 需要专业系统:MiOXSYS System,要求技术人员有较高的专业水平 | [ |
表2
部分因素引起的精子DNA甲基化改变涉及的异常基因"
因素 | 异常基因 | 参考文献 |
---|---|---|
高龄 | DRD346、HTR2A47、GRIN1、SYNGAP1、DEFB126、DLGAP2、FGF11、MYOF、SNRPN | [ |
吸烟与酒精 | LINE-1、MEST、GNAS、P16、F2RL3、AHRR | [ |
PM2.5 | PRR16、TJP2、NFATC1、APOA5、ZFP945、GSE1 | [ |
双酚A | LINE-1、ACHE、PPP2R3C、MLH1、CHD2、SPATA12、SPATA20、TFPI2、FOXF1、SALL1、CDKN1C、HOXC4、ATP5G3、NDUFV2、ASAH1、RAD23B、CUL3、HSPA1L、UBAP2 | [ |
表3
精子染色质表观遗传修饰检测方法"
表观遗传修饰 | 样本 | 方法 | 结果 | 参考文献 |
---|---|---|---|---|
精子DNA甲基化 | 大鼠(Rattus norvegicus) | 全基因组BS | 孕前暴露于大麻的大鼠精子中可检测到甲基化的变化,并且子代DNA可检测到相关甲基化变化,这些变化在功能上与心脏扩大相关 | [ |
猪(Sus scrofa) | 还原BS | 不同水平的DNA片段化的精子细胞表现出相似的整体甲基化 | [ | |
人(Homo sapiens) | MeDIP和NGS | 检测到精子中有805个差异DNA甲基化区,可能作为父系后代自闭症易感性的生物标志物 | [ | |
人(Homo sapiens) | ELISA | 精子DNA甲基化水平与精子常规参数、精子染色质和DNA完整性相关 | [ | |
山羊(Capra sibirica) | 免疫组化 | 在长时间的慢速冷冻下(1~4小时) 可增加DNA甲基化 | [ | |
金鱼/斑马鱼(Carassius auratus/Danio rerio) | LUMA | 甲醇冷冻保存后金鱼精子的总体DNA甲基化没有改变,而二甲基亚砜和1,2 -丙二醇冷冻保存后DNA甲基化降低 | [ | |
大盖巨脂鲤(Piaractus brachypomus) | 酶促DNA甲基化分析 | 所有冷冻保护剂均可引起精子DNA甲基化的显著变化,并表现出更多的胚胎发育延迟和异常 | [ | |
人(Homo sapiens) | 高效液相色谱法 | 有缺陷的、凋亡的人类精子的产生与精子核DNA整体超甲基化的发生障碍相关 | [ | |
人(Homo sapiens) | 薄层色谱法 和免疫荧光法 | 染色体结构异常携带者的染色质完整性的降低可能与精子DNA的低甲基化状态增加有关 | [ | |
人(Homo sapiens) | DNA甲基化微阵列 | 男性年龄对ART结局产生负面影响的潜在机制是DNA甲基化的改变 | [ | |
精子组蛋白修饰 | 人(Homo sapiens) | 苯胺蓝染色 | 部分圆头精子症组和完全圆头精子症组中组蛋白含量无差别 | [ |
铜藻(Sargassum horneri) | 蛋白印记和质谱检测 | 第一次在动物以外的谱系中发现组蛋白H1的存在 | [ | |
人(Homo sapiens) | 蛋白印记和染色质免疫沉淀 | TH2B参与精子染色质致密化过程 | [ | |
精子组蛋白修饰 | 人(Homo sapiens) | 免疫细胞化学 | 在正常成熟人类精子中观察到组蛋白甲基化的异质性存在,没有观察到组蛋白乙酰化(H3K4Ac和H4K5Ac) | [ |
牛(Bovine) | 免疫荧光和蛋白印迹 | TH2B可能参与催化组蛋白的转化 | [ | |
精子染色质重塑 | 人(Homo sapiens) | 苯胺蓝染色和CMA3 | 在复发性流产夫妇的男性伴侣中,阿尔法硫辛酸治疗可减轻精子DNA损伤和脂质过氧化,同时增强精子总活力和染色质致密化 | [ |
野猪(Sus scrofa) | 染色质二硫键检测法 | 猪精子冷冻储存会增加精子二硫键的破坏 | [ |
[1] |
Castillo J, Estanyol JM, Ballescá JL, Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl, 2015, 17(4): 601-609.
doi: 10.4103/1008-682X.153302 pmid: 25926607 |
[2] |
Farkouh A, Salvio G, Kuroda S, Saleh R, Vogiatzi P, Agarwal A. Sperm DNA integrity and male infertility: a narrative review and guide for the reproductive physicians. Transl Androl Urol, 2022, 11(7): 1023-1044.
doi: 10.21037/tau-22-149 pmid: 35958895 |
[3] | Adler A, Roth B, Lundy SD, Takeshima T, Yumura Y, Kuroda S. Sperm DNA fragmentation testing in clinical management of reproductive medicine. Reprod Med Biol, 2023, 22(1): e12547. |
[4] |
Sureka R, Avvaru AK, Sowpati DT, Pathak RU, Mishra RK. Structural and developmental dynamics of Matrix associated regions in Drosophila melanogaster genome. BMC Genomics, 2022, 23(1): 725.
doi: 10.1186/s12864-022-08944-4 pmid: 36284304 |
[5] |
Du WL, Shi GJ, Shan CM, Li ZM, Zhu B, Jia ST, Li Q, Zhang ZG. Mechanisms of chromatin-based epigenetic inheritance. Sci China Life Sci, 2022, 65(11): 2162-2190.
doi: 10.1007/s11427-022-2120-1 pmid: 35792957 |
[6] |
Xu XM, Peng Q, Jiang XJ, Tan SM, Yang YQ, Yang WJ, Han YQ, Chen YY, Oyang LD, Lin JG, Xia LZ, Peng MJ, Wu NY, Tang YY, Li JY, Liao QJ, Zhou YJ. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med, 2023, 55(7): 1357-1370.
doi: 10.1038/s12276-023-01020-1 pmid: 37394582 |
[7] |
Marcho C, Oluwayiose OA, Pilsner JR. The preconception environment and sperm epigenetics. Andrology, 2020, 8(4): 924-942.
doi: 10.1111/andr.12753 pmid: 31901222 |
[8] | Powell CD, Kirchoff DC, DeRouchey JE, Moseley HNB. Entropy based analysis of vertebrate sperm protamines sequences: evidence of potential dityrosine and cysteine- tyrosine cross-linking in sperm protamines. BMC Genomics, 2020, 21(1): 277. |
[9] | Gòdia M, Lian Y, Naval-Sanchez M, Ponte I, Rodríguez-Gil JE, Sanchez A, Clop A. Micrococcal nuclease sequencing of porcine sperm suggests enriched co-location between retained histones and genomic regions related to semen quality and early embryo development. PeerJ, 2023, 11: e15520. |
[10] | Ribas-Maynou J, Nguyen H, Valle R, Wu HW, Yeste M, Ward WS. Sperm degradation after vasectomy follows a sperm chromatin fragmentation-dependent mechanism causing DNA breaks in the toroid linker regions. Mol Hum Reprod, 2022, 29(9): gaac029. |
[11] |
Agarwal A, Majzoub A, Baskaran S, Panner Selvam MK, Cho CL, Henkel R, Finelli R, Leisegang K, Sengupta P, Barbarosie C, Parekh N, Alves MG, Ko E, Arafa M, Tadros N, Ramasamy R, Kavoussi P, Ambar R, Kuchakulla M, Robert KA, Iovine C, Durairajanayagam D, Jindal S, Shah R. Sperm DNA fragmentation: a new guideline for clinicians. World J Mens Health, 2020, 38(4): 412-471.
doi: 10.5534/wjmh.200128 pmid: 32777871 |
[12] |
Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci, 2020, 77(1): 93-113.
doi: 10.1007/s00018-019-03253-8 pmid: 31377843 |
[13] |
Tarozzi N, Bizzaro D, Flamigni C, Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online, 2007, 14(6): 746-757.
pmid: 17579991 |
[14] | Qiu Y, Yang H, Li CY, Xu CL. Progress in research on sperm DNA fragmentation. Med Sci Monit, 2020, 26: e918746. |
[15] | Gualtieri R, Kalthur G, Barbato V, Longobardi S, Di Rella F, Adiga SK, Talevi R. Sperm oxidative stress during in vitro manipulation and its effects on sperm function and embryo development. Antioxidants (Basel), 2021, 10(7): 1025. |
[16] | Andrabi SW, Ara A, Saharan A, Jaffar M, Gugnani N, Esteves SC. Sperm DNA fragmentation: causes, evaluation and management in male infertility. JBRA Assist Reprod, 2024, 28(2): 306-319. |
[17] | Depuydt C, Donders G, Verstraete L, Beert J, Salembier G, Bosmans E, Dhont N, Kerkhofs C, Ombelet W. Negative impact of elevated DNA fragmentation and human papillomavirus (HPV) presence in sperm on the outcome of intra-uterine insemination (IUI). J Clin Med, 2021, 10(4): 717. |
[18] | Arowolo O, Pilsner JR, Sergeyev O, Suvorov A. Mechanisms of male reproductive toxicity of polybrominated diphenyl ethers. Int J Mol Sci, 2022, 23(22): 14229. |
[19] |
Cui XR, Jing X, Wu XQ, Wang ZQ, Li Q. Potential effect of smoking on semen quality through DNA damage and the downregulation of Chk1 in sperm. Mol Med Rep, 2016, 14(1): 753-761.
doi: 10.3892/mmr.2016.5318 pmid: 27221653 |
[20] |
Bareh GM, Jacoby E, Binkley P, Chang TCA, Schenken RS, Robinson RD. Sperm deoxyribonucleic acid fragmentation assessment in normozoospermic male partners of couples with unexplained recurrent pregnancy loss: a prospective study. Fertil Steril, 2016, 105(2): 329-336.e1.
doi: 10.1016/j.fertnstert.2015.10.033 pmid: 26607021 |
[21] | Kumar K, Deka D, Singh A, Mitra DK, Vanitha BR, Dada R. Predictive value of DNA integrity analysis in idiopathic recurrent pregnancy loss following spontaneous conception. J Assist Reprod Genet, 2012, 29(9): 861-867. |
[22] | Lu RJ, Chen X, Yu WJ, Jiang F, Zhou XY, Xu Y, Wang F. Analysis of age-associated alternation of SCSA sperm DNA fragmentation index and semen characteristics of 1790 subfertile males in China. J Clin Lab Anal, 2020, 34(12): e23548. |
[23] | Hassanen E, Elqusi K, Zaki H, Henkel R, Agarwal A. TUNEL assay: establishing a sperm DNA fragmentation cut-off value for egyptian infertile men. Andrologia, 2019, 51(10): e13375. |
[24] | Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Bankoglu EE, Bonassi S, Boutet-Robinet E, Brunborg G, Chao C, Cooke MS, Costa C, Costa S, Dhawan A, de Lapuente J, Bo CD, Dubus J, Dusinska M, Duthie SJ, Yamani NE, Engelward B, Gaivão I, Giovannelli L, Godschalk R, Guilherme S, Gutzkow KB, Habas K, Hernández A, Herrero O, Isidori M, Jha AN, Knasmüller S, Kooter IM, Koppen G, Kruszewski M, Ladeira C, Laffon B, Larramendy M, Hégarat LL, Lewies A, Lewinska A, Liwszyc GE, de Cerain AL, Manjanatha M, Marcos R, Milić M, de Andrade VM, Moretti M, Muruzabal D, Novak M, Oliveira R, Olsen AK, Owiti N, Pacheco M, Pandey AK, Pfuhler S, Pourrut B, Reisinger K, Rojas E, Rundén-Pran E, Sanz-Serrano J, Shaposhnikov S, Sipinen V, Smeets K, Stopper H, Teixeira JP, Valdiglesias V, Valverde M, van Acker F, van Schooten FJ, Vasquez M, Wentzel JF, Wnuk M, Wouters A, Žegura B, Zikmund T, Langie SAS, Azqueta A. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc, 2023, 18(3): 929-989. |
[25] | Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine biomarkers of oxidative DNA damage: a review on HPLC-ECD determination. Molecules, 2022, 27(5): 1620. |
[26] |
Coban O, Serdarogullari M, Yarkiner Z, Serakinci N. Investigating the level of DNA double-strand break in human spermatozoa and its relation to semen characteristics and IVF outcome using phospho-histone H2AX antibody as a biomarker. Andrology, 2020, 8(2): 421-426.
doi: 10.1111/andr.12689 pmid: 31393082 |
[27] |
Pourmasumi S, Khoradmehr A, Rahiminia T, Sabeti P, Talebi AR, Ghasemzadeh J. Evaluation of sperm chromatin integrity using aniline blue and toluidine blue staining in infertile and normozoospermic men. J Reprod Infertil, 2019, 20(2): 95-101.
pmid: 31058054 |
[28] |
Jahmani MY, Hammadeh ME, Al Smadi MA, Baller MK. Label-Free evaluation of chromatin condensation in human normal morphology sperm using Raman spectroscopy. Reprod Sci, 2021, 28(9): 2527-2539.
doi: 10.1007/s43032-021-00494-6 pmid: 33877640 |
[29] |
Majzoub A, Arafa M, El Ansari W, Mahdi M, Agarwal A, Al-Said S, Elbardisi H. Correlation of oxidation reduction potential and total motile sperm count: its utility in the evaluation of male fertility potential. Asian J Androl, 2020, 22(3): 317-322.
doi: 10.4103/aja.aja_75_19 pmid: 31339113 |
[30] | Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of male infertility: the role of DNA methylation. Front Cell Dev Biol, 2021, 9: 689624. |
[31] |
Kumaresan A, Das Gupta M, Datta TK, Morrell JM. Sperm DNA integrity and male fertility in farm animals: a review. Front Vet Sci, 2020, 7: 321.
doi: 10.3389/fvets.2020.00321 pmid: 32637425 |
[32] |
Olszewska M, Barciszewska MZ, Fraczek M, Huleyuk N, Chernykh VB, Zastavna D, Barciszewski J, Kurpisz M. Global methylation status of sperm DNA in carriers of chromosome structural aberrations. Asian J Androl, 2017, 19(1): 117-124.
doi: 10.4103/1008-682X.168684 pmid: 26908061 |
[33] | Ma RH, Zhang ZG, Zhang YT, Jian SY, Li BY. Detection of aberrant DNA methylation patterns in sperm of male recurrent spontaneous abortion patients. Zygote, 2023, 31(2): 163-172. |
[34] |
Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update, 2014, 20(6): 840-852.
doi: 10.1093/humupd/dmu033 pmid: 24961233 |
[35] |
Carrell DT, Salas-Huetos A, Hotaling J. Increasing evidence of the role of the sperm epigenome in embryogenesis: oligoasthenoteratozoospermia, altered embryo DNA methylation, and miscarriage. Fertil Steril, 2018, 110(3): 401-402.
doi: S0015-0282(18)30396-0 pmid: 30098686 |
[36] |
Hattori H, Hiura H, Kitamura A, Miyauchi N, Kobayashi N, Takahashi S, Okae H, Kyono K, Kagami M, Ogata T, Arima T. Association of four imprinting disorders and ART. Clin Epigenetics, 2019, 11(1): 21.
doi: 10.1186/s13148-019-0623-3 pmid: 30732658 |
[37] |
Oluwayiose OA, Wu HT, Saddiki H, Whitcomb BW, Balzer LB, Brandon N, Suvorov A, Tayyab R, Sites CK, Hill L, Marcho C, Pilsner JR. Sperm DNA methylation mediates the association of male age on reproductive outcomes among couples undergoing infertility treatment. Sci Rep, 2021, 11(1): 3216.
doi: 10.1038/s41598-020-80857-2 pmid: 33547328 |
[38] | Alkhaled Y, Laqqan M, Tierling S, Lo Porto C, Amor H, Hammadeh ME. Impact of cigarette-smoking on sperm DNA methylation and its effect on sperm parameters. Andrologia, 2018. |
[39] |
Heikkinen A, Bollepalli S, Ollikainen M. The potential of DNA methylation as a biomarker for obesity and smoking. J Intern Med, 2022, 292(3): 390-408.
doi: 10.1111/joim.13496 pmid: 35404524 |
[40] | Rebuzzini P, Fabozzi G, Cimadomo D, Ubaldi FM, Rienzi L, Zuccotti M, Garagna S. Multi- and transgenerational effects of environmental toxicants on mammalian reproduction. Cells, 2022, 11(19): 3163. |
[41] | Leanza C, Cannarella R, Barbagallo F, Gusmano C, Calogero AE. Does sperm SNRPN methylation change with fertility status and age? a systematic review and meta-regression analysis. Biomedicines, 2024, 12(2): 445. |
[42] | Zhang WJ, Li M, Sun F, Xu XT, Zhang ZF, Liu JW, Sun XW, Zhang AP, Shen YP, Xu JH, Miao MH, Wu B, Yuan Y, Huang XL, Shi HJ, Du J. Association of sperm methylation at LINE-1, four candidate genes, and nicotine/alcohol exposure with the risk of infertility. Front Genet, 2019, 10: 1001. |
[43] | Lee CW, Chen KL, Yuan CS, Lai CS, Tsai XY, Wu PH, Hsu PC. Epigenetic transgenerational effects of PM2.5 collected from southern Taiwan on sperm functions and DNA methylation in mouse offspring. Ecotoxicol Environ Saf, 2024, 269: 115802. |
[44] | Tian YP, Zhou XY, Miao MH, Li DK, Wang ZL, Li RS, Liang H, Yuan W. Association of bisphenol A exposure with LINE-1 hydroxymethylation in human semen. Int J Environ Res Public Health, 2018, 15(8): 1770. |
[45] | Presunto M, Mariana M, Lorigo M, Cairrao E. The effects of bisphenol A on human male infertility: a review of current epidemiological studies. Int J Mol Sci, 2023, 24(15): 12417. |
[46] | Zheng HJ, Zhou XY, Li DK, Yang F, Pan HJ, Li TQ, Miao MH, Li RS, Yuan W. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS One, 2017, 12(6): e0178535. |
[47] |
Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod, 2010, 16(1): 30-36.
doi: 10.1093/molehr/gap080 pmid: 19748904 |
[48] | Bochyńska A, Lüscher-Firzlaff J, Lüscher B. Modes of interaction of KMT2 histone H3 lysine 4 methyltransferase/COMPASS complexes with chromatin. Cells, 2018, 7(3): 17. |
[49] |
Wang T, Gao H, Li W, Liu C. Essential role of histone replacement and modifications in male fertility. Front Genet, 2019, 10: 962.
doi: 10.3389/fgene.2019.00962 pmid: 31649732 |
[50] | Liu TT, Chen XX, Li TJ, Li XL, Lyu YH, Fan XT, Zhang PF, Zeng WX. Histone methyltransferase SETDB1 maintains survival of mouse spermatogonial stem/ progenitor cells via PTEN/AKT/FOXO1 pathway. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(10): 1094-1102. |
[51] |
Dumasia K, Kumar A, Deshpande S, Balasinor NH. Estrogen, through estrogen receptor 1, regulates histone modifications and chromatin remodeling during spermatogenesis in adult rats. Epigenetics, 2017, 12(11): 953-963.
doi: 10.1080/15592294.2017.1382786 pmid: 28949791 |
[52] | Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature, 2007, 450(7166): 119-123. |
[53] |
Vallet-Buisan M, Mecca R, Jones C, Coward K, Yeste M. Contribution of semen to early embryo development: fertilization and beyond. Hum Reprod Update, 2023, 29(4): 395-433.
doi: 10.1093/humupd/dmad006 pmid: 36882116 |
[54] | Soleymani Moud S, Kamal Seraji K, Ramezani M, Piravar Z. Association of single nucleotide polymorphisms in the PYGO2 and PRDM9 genes with idiopathic azoospermia in Iranian infertile male patients. Iran J Med Sci, 2023, 48(1): 77-84. |
[55] |
Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell, 2001, 107(3): 323-337.
doi: 10.1016/s0092-8674(01)00542-6 pmid: 11701123 |
[56] |
Zuo XL, Rong BW, Li L, Lv RT, Lan F, Tong MH. The histone methyltransferase SETD2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem, 2018, 293(24): 9188-9197.
doi: 10.1074/jbc.RA118.002851 pmid: 29716999 |
[57] | Blanco M, El Khattabi L, Gobé C, Crespo M, Coulée M, de la Iglesia A, Ialy-Radio C, Lapoujade C, Givelet M, Delessard M, Seller-Corona I, Yamaguchi K, Vernet N, Van Leeuwen F, Lermine A, Okada Y, Daveau R, Oliva R, Fouchet P, Ziyyat A, Pflieger D, Cocquet J. DOT1L regulates chromatin reorganization and gene expression during sperm differentiation. EMBO Rep, 2023, 24(6): e56316. |
[58] | Pepin AS, Lafleur C, Lambrot R, Dumeaux V, Kimmins S. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. Mol Metab, 2022, 59: 101463. |
[59] |
Lismer A, Dumeaux V, Lafleur C, Lambrot R, Brind'Amour J, Lorincz MC, Kimmins S. Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring. Dev Cell, 2021, 56(5): 671-686.e6.
doi: 10.1016/j.devcel.2021.01.014 pmid: 33596408 |
[60] | Ma X, Fan Y, Xiao WW, Ding XW, Hu WY, Xia YK. Glufosinate-ammonium induced aberrant histone modifications in mouse sperm are concordant with transcriptome in preimplantation embryos. Front Physiol, 2021, 12: 819856. |
[61] | Ashapkin V, Suvorov A, Pilsner JR, Krawetz SA, Sergeyev O. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update, 2023, 29(1): 24-44. |
[62] | Pandya RK, Jijo A, Cheredath A, Uppangala S, Salian SR, Lakshmi VR, Kumar P, Kalthur G, Gupta S, Adiga SK. Differential sperm histone retention in normozoospermic ejaculates of infertile men negatively affects sperm functional competence and embryo quality. Andrology, 2024, 12(4): 881-890. |
[63] | Fenic I, Hossain HM, Sonnack V, Tchatalbachev S, Thierer F, Trapp J, Failing K, Edler KS, Bergmann M, Jung M, Chakraborty T, Steger K. In vivo application of histone deacetylase inhibitor trichostatin-a impairs murine male meiosis. J Androl, 2008, 29(2): 172-185. |
[64] |
Doyon Y, Selleck W, Lane WS, Tan S, Côté J. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol, 2004, 24(5): 1884-1896.
doi: 10.1128/MCB.24.5.1884-1896.2004 pmid: 14966270 |
[65] | Dhillon VS, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and lower antioxidant capacity of seminal plasma is associated with shorter sperm telomere length in oligospermic men. Int J Mol Sci, 2024, 25(2): 718. |
[66] |
Hada M, Masuda K, Yamaguchi K, Shirahige K, Okada Y. Identification of a variant-specific phosphorylation of TH2A during spermiogenesis. Sci Rep, 2017, 7: 46228.
doi: 10.1038/srep46228 pmid: 28387373 |
[67] | Schon SB, Luense LJ, Wang XS, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL. Histone modification signatures in human sperm distinguish clinical abnormalities. J Assist Reprod Genet, 2019, 36(2): 267-275. |
[68] |
Dhar S, Thota A, Rao MR. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis. J Biol Chem, 2012, 287(9): 6387-6405.
doi: 10.1074/jbc.M111.288167 pmid: 22215678 |
[69] | Shang EY, Nickerson HD, Wen DC, Wang XY, Wolgemuth DJ. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double- bromodomain- containing proteins, is essential for male germ cell differentiation. Development, 2007, 134(19): 3507-3515. |
[70] | Ugur MR, Kutchy NA, de Menezes EB, Ul-Husna A, Haynes BP, Uzun A, Kaya A, Topper E, Moura A, Memili E. Retained acetylated histone four in bull sperm associated with fertility. Front Vet Sci, 2019, 6: 223. |
[71] |
Paradowska AS, Miller D, Spiess AN, Vieweg M, Cerna M, Dvorakova-Hortova K, Bartkuhn M, Schuppe HC, Weidner W, Steger K. Genome wide identification of promoter binding sites for H4K12ac in human sperm and its relevance for early embryonic development. Epigenetics, 2012, 7(9): 1057-1070.
pmid: 22894908 |
[72] | Zhang ZH, Kang XJ, Mu SM. Histone phosphorylation and spermatogenesis. Hereditas (Beijing), 2014, 36(3): 220-227. |
张朝晖, 康现江, 穆淑梅. 组蛋白磷酸化修饰与精子发生. 遗传, 2014, 36(3): 220-227. | |
[73] |
Jha KN, Tripurani SK, Johnson GR. TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci, 2017, 130(10): 1835-1844.
doi: 10.1242/jcs.202721 pmid: 28389581 |
[74] |
Pinto DMS, Flaus A. Structure and function of histone H2AX. Subcell Biochem, 2010, 50: 55-78.
doi: 10.1007/978-90-481-3471-7_4 pmid: 20012577 |
[75] | Patankar A, Sudhakar DVS, Gajbhiye R, Surve S, Thangaraj K, Parte P. Proteomic and genetic dissection of testis-specific histone 2B in infertile men reveals its contribution to meiosis and sperm motility. F S Sci, 2022, 3(4): 322-330. |
[76] | Zhang ZH, Mu SM, Guo MS, Wu JL, Li YQ, Zhang H, Wang Y, Kang XJ. Dynamics of histone H2A, H4 and HS1ph during spermatogenesis with a focus on chromatin condensation and maturity of spermatozoa. Sci Rep, 2016, 6: 25089. |
[77] | Zhang ZH, Mu SM, Chen TR, Sun Z, Shu ZQ, Li YQ, Kang XJ. H4S1ph, an alternative epigenetic marker for sperm maturity. Andrologia, 2020, 52(1): e13352. |
[78] | Sheng K, Liang XT, Huang SZ, Xu WM. The role of histone ubiquitination during spermatogenesis. Biomed Res Int, 2014, 2014: 870695. |
[79] |
Chen LJ, Xu WM, Yang M, Wang K, Chen Y, Huang XJ, Ma QH. HUWE1 plays important role in mouse preimplantation embryo development and the dysregulation is associated with poor embryo development in humans. Sci Rep, 2016, 6: 37928.
doi: 10.1038/srep37928 pmid: 27901130 |
[80] |
Sun JY, Zhu ZR, Li WW, Shen MY, Cao CH, Sun QC, Guo ZQ, Liu L, Wu DH. UBE2T-regulated H2AX monoubiquitination induces hepatocellular carcinoma radioresistance by facilitating CHK1 activation. J Exp Clin Cancer Res, 2020, 39(1): 222.
doi: 10.1186/s13046-020-01734-4 pmid: 33087136 |
[81] | Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li DS, Fu XD, Li JS, Shi HJ, Liu MF. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell, 2017, 169(6): 1090-1104.e13. |
[82] |
Meng CL, Liao JY, Zhao DF, Huang HH, Qin JZ, Lee TL, Chen DG, Chan WY, Xia Y. L3MBTL2 regulates chromatin remodeling during spermatogenesis. Cell Death Differ, 2019, 26(11): 2194-2207.
doi: 10.1038/s41418-019-0283-z pmid: 30760872 |
[83] | Wang XK, Kang JY, Wei LX, Yang XG, Sun HD, Yang SM, Lu L, Yan M, Bai MZ, Chen YY, Long JJ, Li N, Li DS, Huang J, Lei M, Shao Z, Yuan W, Zuo EW, Lu KH, Liu MF, Li JS. PHF7 is a novel histone H2A E3 ligase prior to histone-to-protamine exchange during spermiogenesis. Development, 2019, 146(13): dev175547. |
[84] |
Aoki VW, Emery BR, Liu LH, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl, 2006, 27(6): 890-898.
doi: 10.2164/jandrol.106.000703 pmid: 16870950 |
[85] | Ge SQ, Zhao ZH, Zhang XQ, Hao Y. Epigenetic modifications in human spermatozoon and its potential role in embryonic development. Hereditas (Beijing), 2014, 36(5): 439-446. |
葛少钦, 赵峥辉, 张雪倩, 郝媛. 精子表观遗传修饰及其在胚胎发育过程中的潜在作用. 遗传, 2014, 36(5): 439-446. | |
[86] |
Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol, 2007, 8(9): 227.
doi: 10.1186/gb-2007-8-9-227 pmid: 17903313 |
[87] |
Castillo J, Amaral A, Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology, 2014, 2(3): 326-338.
doi: 10.1111/j.2047-2927.2013.00170.x pmid: 24327354 |
[88] | de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis, 2023, 15(2): e1588. |
[89] |
Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet, 2001, 28(1): 82-86.
pmid: 11326282 |
[90] |
Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod, 2003, 69(1): 211-217.
pmid: 12620939 |
[91] |
Francis S, Yelumalai S, Jones C, Coward K. Aberrant protamine content in sperm and consequential implications for infertility treatment. Hum Fertil (Camb), 2014, 17(2): 80-89.
doi: 10.3109/14647273.2014.915347 pmid: 24869677 |
[92] | Jiang H, Huang CJ. Aberrant protamination in sperm correlates to anomalous nuclear and cytoplasmic architectures in infertile males with sperm dysmorphology. Asian J Androl, 2023, 26(2): 183-188. |
[93] |
Soler-Ventura A, Castillo J, de la Iglesia A, Jodar M, Barrachina F, Ballesca JL, Oliva R. Mammalian sperm protamine extraction and analysis: a step-by-step detailed protocol and brief review of protamine alterations. Protein Pept Lett, 2018, 25(5): 424-433.
doi: 10.2174/0929866525666180412155205 pmid: 29651936 |
[94] | Arévalo L, Merges GE, Schneider S, Oben FE, Neumann IS, Schorle H. Loss of the cleaved-protamine 2 domain leads to incomplete histone-to-protamine exchange and infertility in mice. PLoS Genet, 2022, 18(6): e1010272. |
[95] | Rezaei-Gazik M, Vargas A, Amiri-Yekta A, Vitte AL, Akbari A, Barral S, Esmaeili V, Chuffart F, Sadighi- Gilani MA, Couté Y, Eftekhari-Yazdi P, Khochbin S, Rousseaux S, Totonchi M. Direct visualization of pre-protamine 2 detects protamine assembly failures and predicts ICSI success. Mol Hum Reprod, 2022, 28(2): gaac004. |
[96] |
Brunner AM, Nanni P, Mansuy IM. Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin, 2014, 7(1): 2.
doi: 10.1186/1756-8935-7-2 pmid: 24443974 |
[97] |
Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet, 2000, 25(4): 448-452.
doi: 10.1038/78153 pmid: 10932193 |
[98] | Schon SB, Moritz L, Rabbani M, Meguid J, Juliano BR, Ruotolo BT, Aston K, Hammoud SS. Proteomic analysis of human sperm reveals changes in protamine 1 phosphorylation in men with infertility. F S Sci, 2024, 5(2): 121-129. |
[99] | Martisova A, Holcakova J, Izadi N, Sebuyoya R, Hrstka R, Bartosik M. DNA methylation in solid tumors: functions and methods of detection. Int J Mol Sci, 2021, 22(8): 4247. |
[100] | Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK. Genome-wide mapping of DNA methylation 5mC by methylated DNA immunoprecipitation (MeDIP)- sequencing. Methods Mol Biol, 2021, 2198: 301-310. |
[101] | Cong WX, Li N, Wang JB, Kang Y, Miao YL, Xu CM, Wang ZQ, Liu TT, Gong L, Liu B, Ou XF. Genome-wide locus-specific DNA methylation repatterning may facilitate rapid evolution of mercury resistance in rice. Genes Genomics, 2022, 44(3): 299-306. |
[102] | Honkova K, Rossnerova A, Chvojkova I, Milcova A, Margaryan H, Pastorkova A, Ambroz A, Rossner P Jr, Jirik V, Rubes J, Sram RJ, Topinka J. Genome-wide DNA methylation in policemen working in cities differing by major sources of air pollution. Int J Mol Sci, 2022, 23(3): 1666. |
[103] | Gaździcka J, Biernacki K, Gołąbek K, Miśkiewicz- Orczyk K, Zięba N, Misiołek M, Strzelczyk JK. Global DNA methylation level in tumour and margin samples in relation to human papilloma virus and epstein-barr virus in patients with oropharyngeal and oral squamous cell carcinomas. Biomedicines, 2024, 12(4): 914. |
[104] | Uysal F, Kahveci S, Sukur G, Cinar O. Embryo culture media differentially alter DNA methylating enzymes and global DNA methylation in embryos and oocytes. J Mol Histol, 2022, 53(1): 63-74. |
[105] |
Heidari M, Darbandi M, Darbandi S, Sadeghi MR. Comparing the different methods of sperm chromatin assessment concerning ART outcomes. Turk J Urol, 2020, 46(5): 348-353.
doi: 10.5152/tud.2020.19262 pmid: 32479255 |
[106] |
Seligman J, Shalgi R, Oschry Y, Kosower NS. Sperm analysis by flow cytometry using the fluorescent thiol labeling agent monobromobimane. Mol Reprod Dev, 1991, 29(3): 276-281.
pmid: 1931044 |
[107] |
Schrott R, Modliszewski JL, Hawkey AB, Grenier C, Holloway Z, Evans J, Pippen E, Corcoran DL, Levin ED, Murphy SK. Sperm DNA methylation alterations from cannabis extract exposure are evident in offspring. Epigenetics Chromatin, 2022, 15(1): 33.
doi: 10.1186/s13072-022-00466-3 pmid: 36085240 |
[108] | Khezri A, Narud B, Stenseth EB, Johannisson A, Myromslien FD, Gaustad AH, Wilson RC, Lyle R, Morrell JM, Kommisrud E, Ahmad R. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics, 2019, 20(1): 897. |
[109] |
Garrido N, Cruz F, Egea RR, Simon C, Sadler- Riggleman I, Beck D, Nilsson E, Ben Maamar M, Skinner MK. Sperm DNA methylation epimutation biomarker for paternal offspring autism susceptibility. Clin Epigenetics, 2021, 13(1): 6.
doi: 10.1186/s13148-020-00995-2 pmid: 33413568 |
[110] |
Montjean D, Zini A, Ravel C, Belloc S, Dalleac A, Copin H, Boyer P, McElreavey K, Benkhalifa M. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology, 2015, 3(2): 235-240.
doi: 10.1111/andr.12001 pmid: 25755112 |
[111] | Peris-Frau P, Álvarez-Rodríguez M, Martín-Maestro A, Iniesta-Cuerda M, Sánchez-Ajofrín I, Medina-Chávez DA, Garde JJ, Villar M, Rodríguez-Martínez H, Soler AJ. Unravelling how in vitro capacitation alters ram sperm chromatin before and after cryopreservation. Andrology, 2021, 9(1): 414-425. |
[112] |
Depincé A, Gabory A, Dziewulska K, Le Bail PY, Jammes H, Labbé C. DNA methylation stability in fish spermatozoa upon external constraint: impact of fish hormonal stimulation and sperm cryopreservation. Mol Reprod Dev, 2020, 87(1): 124-134.
doi: 10.1002/mrd.23297 pmid: 31746511 |
[113] | de Mello F, Garcia JS, Godoy LC, Depincé A, Labbé C, Streit DP Jr. The effect of cryoprotectant agents on DNA methylation patterns and progeny development in the spermatozoa of Colossoma macropomum. Gen Comp Endocrinol, 2017, 245: 94-101. |
[114] |
Barzideh J, Scott RJ, Aitken RJ. Analysis of the global methylation status of human spermatozoa and its association with the tendency of these cells to enter apoptosis. Andrologia, 2013, 45(6): 424-429.
doi: 10.1111/and.12033 pmid: 23121197 |
[115] | Cheung S, Parrella A, Tavares D, Keating D, Xie P, Rosenwaks Z, Palermo GD. Single-center thorough evaluation and targeted treatment of globozoospermic men. J Assist Reprod Genet, 2021, 38(8): 2073-2086. |
[116] | Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep, 2024, 14(1): 3387. |
[117] |
Patankar A, Gajbhiye R, Surve S, Parte P. Epigenetic landscape of testis specific histone H2B variant and its influence on sperm function. Clin Epigenetics, 2021, 13(1): 101.
doi: 10.1186/s13148-021-01088-4 pmid: 33933143 |
[118] | La Spina FA, Romanato M, Brugo-Olmedo S, De Vincentiis S, Julianelli V, Rivera RM, Buffone MG. Heterogeneous distribution of histone methylation in mature human sperm. J Assist Reprod Genet, 2014, 31(1): 45-49. |
[119] | Kutchy NA, Velho A, Menezes ESB, Jacobsen M, Thibaudeau G, Wills RW, Moura A, Kaya A, Perkins A, Memili E. Testis specific histone 2B is associated with sperm chromatin dynamics and bull fertility-a pilot study. Reprod Biol Endocrinol, 2017, 15(1): 59. |
[120] |
Habibi M, Fakhari Zavareh Z, Abbasi B, Esmaeili V, Shahverdi A, Sadighi Gilani MA, Tavalaee M, Nasr-Esfahani MH. Alpha-lipoic acid supplementation for male partner of couples with recurrent pregnancy loss: a post hoc analysis in clinical trial. Int J Fertil Steril, 2023, 17(1): 67-74.
doi: 10.22074/ijfs.2022.543027.1222 pmid: 36617206 |
[121] | Lacalle E, Fernández-Alegre E, Gómez-Giménez B, Álvarez-Rodríguez M, Martín-Fernández B, Soriano- Úbeda C, Martínez-Pastor F. Application of flow cytometry using advanced chromatin analyses for assessing changes in sperm structure and DNA integrity in a porcine model. Int J Mol Sci, 2024, 25(4): 1953. |
[122] |
Ribas-Maynou J, Gawecka JE, Benet J, Ward WS. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance. Mol Hum Reprod, 2014, 20(4): 330-340.
doi: 10.1093/molehr/gat090 pmid: 24282283 |
[123] |
Gawecka JE, Ribas-Maynou J, Benet J, Ward WS. A model for the control of DNA integrity by the sperm nuclear matrix. Asian J Androl, 2015, 17(4): 610-615.
doi: 10.4103/1008-682X.153853 pmid: 25926613 |
[124] | Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G, Krawetz SA. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction, 2011, 141(1): 21-36. |
[125] | Gawecka JE, Boaz S, Kasperson K, Nguyen H, Evenson DP, Ward WS. Luminal fluid of epididymis and vas deferens contributes to sperm chromatin fragmentation. Hum Reprod, 2015, 30(12): 2725-2736. |
[126] |
Shaman JA, Prisztoka R, Ward WS. Topoisomerase IIB and an extracellular nuclease interact to digest sperm DNA in an apoptotic-like manner. Biol Reprod, 2006, 75(5): 741-748.
pmid: 16914690 |
[127] |
Viñolas-Vergés E, Yeste M, Garriga F, Bonet S, Mateo-Otero Y, Ribas-Maynou J. An intracellular, non-oxidative factor activates in vitro chromatin fragmentation in pig sperm. Biol Res, 2023, 56(1): 53.
doi: 10.1186/s40659-023-00467-w pmid: 37876007 |
[128] |
Mir SM, Samavarchi Tehrani S, Goodarzi G, Jamalpoor Z, Asadi J, Khelghati N, Qujeq D, Maniati M. Shelterin complex at telomeres: implications in ageing. Clin Interv Aging, 2020, 15: 827-839.
doi: 10.2147/CIA.S256425 pmid: 32581523 |
[129] | Balmori C, Varela E. Should we consider telomere length and telomerase activity in male factor infertility? Curr Opin Obstet Gynecol, 2018, 30(3): 197-202. |
[130] | Chieffi Baccari G, Iurato G, Santillo A, Dale B. Male germ cell telomeres and chemical pollutants. Biomolecules, 2023, 13(5): 745. |
[131] | Lopes AC, Oliveira PF, Pinto S, Almeida C, Pinho MJ, Sá R, Rocha E, Barros A, Sousa M. Discordance between human sperm quality and telomere length following differential gradient separation/swim-up. J Assist Reprod Genet, 2020, 37(10): 2581-2603. |
[132] |
Ioannou D, Millan NM, Jordan E, Tempest HG. A new model of sperm nuclear architecture following assessment of the organization of centromeres and telomeres in three-dimensions. Sci Rep, 2017, 7: 41585.
doi: 10.1038/srep41585 pmid: 28139771 |
[133] | Erdem HB, Bahsi T, Ergün MA. Function of telomere in aging and age related diseases. Environ Toxicol Pharmacol, 2021, 85: 103641. |
[134] |
Vyas CM, Ogata S, Reynolds CF, Mischoulon D, Chang G, Cook NR, Manson JE, Crous-Bou M, De Vivo I, Okereke OI. Telomere length and its relationships with lifestyle and behavioural factors: variations by sex and race/ethnicity. Age Ageing, 2021, 50(3): 838-846.
doi: 10.1093/ageing/afaa186 pmid: 33001148 |
[135] | Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza- Núñez VM. Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology (Basel), 2021, 10(4): 253. |
[136] |
Hemann MT, Rudolph KL, Strong MA, DePinho RA, Chin L, Greider CW. Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell, 2001, 12(7): 2023-2030.
pmid: 11452000 |
[137] | Darmishonnejad Z, Zarei-Kheirabadi F, Tavalaee M, Zarei-Kheirabadi M, Zohrabi D, Nasr-Esfahani MH. Relationship between sperm telomere length and sperm quality in infertile men. Andrologia, 2020, 52(5): e13546. |
[138] | Rocca MS, Speltra E, Menegazzo M, Garolla A, Foresta C, Ferlin A. Sperm telomere length as a parameter of sperm quality in normozoospermic men. Hum Reprod, 2016, 31(6): 1158-1163. |
[139] | Moustakli E, Zikopoulos A, Sakaloglou P, Bouba I, Sofikitis N, Georgiou I. Functional association between telomeres, oxidation and mitochondria. Front Reprod Health, 2023, 5: 1107215. |
[140] |
Yang QL, Zhang N, Zhao FF, Zhao WL, Dai SJ, Liu JH, Bukhari I, Xin H, Niu WB, Sun YP. Processing of semen by density gradient centrifugation selects spermatozoa with longer telomeres for assisted reproduction techniques. Reprod Biomed Online, 2015, 31(1): 44-50.
doi: 10.1016/j.rbmo.2015.02.016 pmid: 25982091 |
[141] |
Hanson BM, Tao X, Zhan YP, Kim JG, Klimczak AM, Herlihy NS, Scott RT Jr, Seli E. Shorter telomere length of white blood cells is associated with higher rates of aneuploidy among infertile women undergoing in vitro fertilization. Fertil Steril, 2021, 115(4): 957-965.
doi: 10.1016/j.fertnstert.2020.09.164 pmid: 33272640 |
[142] |
Telomeres Mendelian Randomization Collaboration, Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, Wade KH, Timpson NJ, Evans DM, Willeit P, Aviv A, Gaunt TR, Hemani G, Mangino M, Ellis HP, Kurian KM, Pooley KA, Eeles RA, Lee JE, Fang SY, Chen WV, Law MH, Bowdler LM, Iles MM, Yang Q, Worrall BB, Markus HS, Hung RJ, Amos CI, Spurdle AB, Thompson DJ, O'Mara TA, Wolpin B, Amundadottir L, Stolzenberg-Solomon R, Trichopoulou A, Onland-Moret NC, Lund E, Duell EJ, Canzian F, Severi G, Overvad K, Gunter MJ, Tumino R, Svenson U, van Rij A, Baas AF, Bown MJ, Samani NJ, Tromp G, Jones GT, Kuivaniemi H, Elmore JR, Johansson M, McKay J, Scelo G, Carreras-Torres R, Gaborieau V, Brennan P, Bracci PM, Neale RE, Olson SH, Gallinger S, Li DH, Petersen GM, Risch HA, Klein AP, Han JL, Abnet CC, Freedman ND, Taylor PR, Maris JM, Aben KK, Kiemeney LA, Vermeulen SH, Wiencke JK, Walsh KM, Wrensch M, Rice T, Turnbull C, Litchfield K, Paternoster L, Standl M, Abecasis GR, SanGiovanni JP, Li Y, Mijatovic V, Sapkota Y, Low SK, Zondervan KT, Montgomery GW, Nyholt DR, van Heel DA, Hunt K, Arking DE, Ashar FN, Sotoodehnia N, Woo D, Rosand J, Comeau ME, Brown WM, Silverman EK, Hokanson JE, Cho MH, Hui JN, Ferreira MA, Thompson PJ, Morrison AC, Felix JF, Smith NL, Christiano AM, Petukhova L, Betz RC, Fan X, Zhang XJ, Zhu CH, Langefeld CD, Thompson SD, Wang FJ, Lin X, Schwartz DA, Fingerlin T, Rotter JI, Cotch MF, Jensen RA, Munz M, Dommisch H, Schaefer AS, Han F, Ollila HM, Hillary RP, Albagha O, Ralston SH, Zeng CJ, Zheng W, Shu XO, Reis A, Uebe S, Hüffmeier U, Kawamura Y, Otowa T, Sasaki T, Hibberd ML, Davila S, Xie G, Siminovitch K, Bei JX, Zeng YX, Försti A, Chen BW, Landi S, Franke A, Fischer A, Ellinghaus D, Flores C, Noth I, Ma SF, Foo JN, Liu JJ, Kim JW, Cox DG, Delattre O, Mirabeau O, Skibola CF, Tang CS, Garcia-Barcelo M, Chang KP, Su WH, Chang YS, Martin NG, Gordon S, Wade TD, Lee C, Kubo M, Cha PC, Nakamura Y, Levy D, Kimura M, Hwang SJ, Hunt S, Spector T, Soranzo N, Manichaikul AW, Barr RG, Kahali B, Speliotes E, Yerges-Armstrong LM, Cheng CY, Jonas JB, Wong TY, Fogh I, Lin K, Powell JF, Rice K, Relton CL, Martin RM, Davey Smith G. Association between telomere length and risk of cancer and non-neoplastic diseases: a mendelian randomization study. JAMA Oncol, 2017, 3(5): 636-651.
doi: 10.1001/jamaoncol.2016.5945 pmid: 28241208 |
[143] | Lai TP, Wright WE, Shay JW. Comparison of telomere length measurement methods. Philos Trans R Soc Lond B Biol Sci, 2018, 373(1741): 20160451. |
[144] |
Demeke T, Dobnik D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal Bioanal Chem, 2018, 410(17): 4039-4050.
doi: 10.1007/s00216-018-1010-1 pmid: 29574561 |
[145] | Luo YQ, Viswanathan R, Hande MP, Loh AHP, Cheow LF. Massively parallel single-molecule telomere length measurement with digital real-time PCR. Sci Adv, 2020, 6(34): eabb7944. |
[1] | 欧秀芳, 吴莹, 李宁, 姜丽丽, 刘宝, 宫磊. 基于科教融合培养大学生拔尖创新能力的表观遗传学综合实验课程[J]. 遗传, 2023, 45(12): 1158-1168. |
[2] | 张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[3] | 胡颖楚, 胡豪畅, 林少沂, 陈晓敏. DNA羟甲基化调控动脉粥样硬化的研究进展[J]. 遗传, 2020, 42(7): 632-640. |
[4] | 梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
[5] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[6] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[7] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[8] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[9] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[10] | 方科, 张凯翔, 王建, 付志猛, 赵湘辉. 表观遗传学新标记--5-羟甲基胞嘧啶检测方法的研究进展[J]. 遗传, 2016, 38(3): 206-216. |
[11] | 孙凌云, 李星逾, 孙志为. 原发性肝癌的表观遗传学及其治疗[J]. 遗传, 2015, 37(6): 517-527. |
[12] | 任才芳,孙红艳,王立中,张国敏,樊懿萱,颜光耀,王丹,王锋. iPSCs遗传稳定性与重编程机制的研究进展[J]. 遗传, 2014, 36(9): 879-887. |
[13] | 邓大君. DNA甲基化和去甲基化的研究现状及思考[J]. 遗传, 2014, 36(5): 403-410. |
[14] | 丁楠, 渠鸿竹, 方向东. ENCODE计划和功能基因组研究[J]. 遗传, 2014, 36(3): 237-247. |
[15] | 沈圣, 屈彦纯, 张军. 下一代测序技术在表观遗传学研究中的重要应用及进展[J]. 遗传, 2014, 36(3): 256-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: