遗传 ›› 2020, Vol. 42 ›› Issue (5): 435-443.doi: 10.16288/j.yczz.19-390
收稿日期:
2020-01-02
修回日期:
2020-04-08
出版日期:
2020-05-20
发布日期:
2020-04-26
通讯作者:
唐中林,陈斌
E-mail:tangzhonglin@caas.cn;chenbin7586@126.com
作者简介:
刘思远,在读博士研究生,专业方向:动物遗传育种与繁殖。E-mail: 515970802@qq.com|易国强,研究员,研究方向:功能基因组和表观遗传学。E-mail:yiguoqiang@caas.cn. 刘思远和易国强为并列第一作者。
基金资助:
Siyuan Liu1,2, Guoqiang Yi2, Zhonglin Tang2,3(), Bin Chen1()
Received:
2020-01-02
Revised:
2020-04-08
Online:
2020-05-20
Published:
2020-04-26
Contact:
Tang Zhonglin,Chen Bin
E-mail:tangzhonglin@caas.cn;chenbin7586@126.com
Supported by:
摘要:
CRISPR/Cas9系统是一种近年来被广泛应用于基因组编辑的强大工具。通过将CRISPR/Cas9系统中的Cas9蛋白突变后,使其失去剪切活性而成为dCas9 (nuclease-dead Cas9),再结合基因功能丧失(loss-of-function, LOF)、基因功能激活(gain-of-function, GOF)以及非编码功能基因鉴定技术即可实现全基因组高通量的功能基因及调控元件靶向鉴定和筛选。目前,该技术已被广泛应用于疾病免疫机理、药物靶点筛选和动物遗传育种等研究,为生命医学和基础科学带来了全新高效的技术方法和研究思路。本文综述了基于CRISPR/Cas9技术在全基因组中高通量筛选功能基因及调控元件的方法及研究进展,重点阐述了CRISPR/Cas9系统在动物细胞中筛选功能性基因的方法,以期为基因编辑及相关研究领域提供参考。
刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443.
Siyuan Liu, Guoqiang Yi, Zhonglin Tang, Bin Chen. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements[J]. Hereditas(Beijing), 2020, 42(5): 435-443.
[1] | Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V . CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int J Oncol, 2018,53(2):443-468. |
[2] | Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, Wojtkiewicz J . CRISPR/Cas9 technology as an emerging tool for targeting Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci, 2018,19(3):906. |
[3] | Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, Dos Santos-Neto PC, Nguyen TH, Creneguy A, Brusselle L, Anegon I, Menchaca A. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One, 2015,10(8):e0136690. |
[4] | Jansen R, Embden JD, Gaastra W, Schouls LM . Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575. |
[5] | Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987,169(12):5429-5433. |
[6] | Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, Van der Oost J,. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008,321(5891):960-964. |
[7] | Pourcel C, Salvignol G, Vergnaud G . CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005,151(Pt 3):653-663. |
[8] | Anders C, Niewoehner O, Duerst A, Jinek M . Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014,513(7519):569-573. |
[9] | Wyman C, Kanaar R . DNA double-strand break repair: all's well that ends well. Annu Rev Genet, 2006,40:363-383. |
[10] |
Mao Z, Bozzella M, Seluanov A, Gorbunova V . DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle, 2008,7(18):2902-2906.
doi: 10.4161/cc.7.18.6679 |
[11] | Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F . Genome- scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc, 2017,12(4):828-863. |
[12] | Chowdhury TA, Koceja C, Eisa-Beygi S, Kleinstiver BP, Kumar SN, Lin CW, Li K, Prabhudesai S, Joung K, Ramchandran R . Temporal and spatial post-transcriptional regulation of zebrafish tie1 mrna by long noncoding RNA during brain vascular assembly. Arterioscler Thromb Vasc Biol, 2018,38(7):1562-1575. |
[13] | Li HH, Huang CH . Functional genetic screening using CRISPR-Cas9 system. Chin J Biotech, 2018,34(4):461-472. |
李欢欢, 黄承浩 . 基于CRISPR-Cas9的功能基因筛选研究进展. 生物工程学报, 2018,34(4):461-472. | |
[14] | Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS . CRISPR- mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013,154(2):442-451. |
[15] | Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, Attenello FJ, Villalta JE, Cho MY, Chen Y, Mandegar MA, Olvera MP, Gilbert LA, Conklin BR, Chang HY, Weissman JS, Lim DA, . CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355(6320). pii:aah7111. |
[16] | Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA . RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods, 2013,10(10):973-976. |
[17] |
Kampmann M . CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol, 2018,13(2):406-416.
doi: 10.1021/acschembio.7b00657 |
[18] | Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM. Highly efficient Cas9-mediated transcriptional programming. Nat Methods, 2015,12(4):326-328. |
[19] | Ganguly J, Martin-Pascual M, van Kranenburg R,. CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313. Microb Biotechnol, 2019,13(2):339-349. |
[20] | Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F . Genome- scale transcriptional activation by an engineered CRISPR- Cas9 complex. Nature, 2015,517(7536):583-588. |
[21] | Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE . Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol, 2016,34(2):184-191. |
[22] | Sanjana NE, Shalem O, Zhang F . Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods, 2014,11(8):783-784. |
[23] |
Liu HL, Wei Z, Dominguez A, Li YD, Wang XW, Qi LS . CRISPR-ERA: a comprehensive design tool for CRISPR- mediated gene editing, repression and activation. Bioinformatics, 2015,31(22):3676-3678.
doi: 10.1093/bioinformatics/btv423 |
[24] | Zhao CZ, Zheng XG, Qu WB, Li GL, Li XY, Miao YL, Han XS, Liu XD, Li ZH, Ma YL, Shao QZ, Li HW, Sun F, Xie SS, Zhao SH . CRISPR-offinder: a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif. Int J Biol Sci, 2017,13(12):1470-1478. |
[25] | Chen C, Hao S, Bai Y, Zhang JP, Zhang JB, Cheng T . Establishment and optimization of genome-wide CRISPR/ Cas9-sgRNA screening system in THP1cell line for functional oncogenes and tumor suppressor genes. Scientia Sinica Vitae, 2016,46(7):839-850. |
陈晨, 郝莎, 白杨, 张健萍, 张孝兵, 程涛 . CRISPR/ Cas9-sgRNA全基因组文库筛选人单核细胞白血病功能性促癌/抑癌基因体系的建立与优化. 中国科学:生命科学, 2016,46(7):839-850. | |
[26] | Morgens DW, Deans RM, Li A, Bassik MC . Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat Biotechnol, 2016,34(6):634-636. |
[27] | Schuster A, Erasimus H, Fritah S, Nazarov PV, van Dyck E, Niclou SP, Golebiewska A,. RNAi/CRISPR screens: from a pool to a valid hit. Trends Biotechnol, 2019,37(1):38-55. |
[28] | Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, Crawford GE, Reddy TE, Gersbach CA . CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol, 2017,35(6):561-568. |
[29] | Wang Z, Yang Y, Li S, Li K, Tang Z . Analysis and comparison of long non-coding RNAs expressed in the ovaries of Meishan and Yorkshire pigs. Anim Genet, 2019,50(6):660-669. |
[30] | Yu X, Wang Z, Sun H, Yang Y, Li K, Tang Z . Long non-coding MEG3 is a marker for skeletal muscle development and meat production traits in pigs. Anim Genet, 2018,49(6):571-578. |
[31] | Zheng XM, Chen J, Pang HB, Liu S, Gao Q, Wang JR, Qiao WH, Wang H, Liu J, Olsen KM, Yang QW. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. Sci Adv, 2019, 5(12): eaax3619. |
[32] |
Cai P, Otten AB, Cheng B, Ishii MA, Zhang W, Huang BB, Qu K, Sun BK . A genome-wide long noncoding RNA CRISPRi screen identifies PRANCR as a novel regulator of epidermal homeostasi. Genome Res, 2020,30(1):22-34.
doi: 10.1101/gr.251561.119 |
[33] |
Esposito R, Bosch N, Lanzós A, Polidori T, Pulido- Quetglas C, Johnson R . Hacking the cancer genome: Profiling therapeutically actionable long Non-coding RNAs using CRISPR-Cas9 screening. Cancer cell, 2019,35(4):545-557.
doi: 10.1016/j.ccell.2019.01.019 |
[34] | Liu Y, Cao ZZ, Wang YN, Guo Y, Xu P, Yuan PF, Liu ZH, He Y, Wei WS . Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol, 2018,36(12):1203-1210. |
[35] | Tang ZL, Li Y, Wan P, Li XP, Zhao SH, Liu B, Fan B, Zhu MJ, Yu M, Li K . LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biology, 2007,8(6):R115. |
[36] | Li Y, Xu ZY, Li HY, Xiong YZ, Zuo B . Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci, 2010,6(4):350-360. |
[37] | Bi PP, Ramirez-Martinez A, Li H, Cannavino J, Mcanally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN . Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017,356(6335):323-327. |
[38] | MacLeod RS, Cawley KM, Gubrij I, Nookaew I, Onal M, O'Brien CA . Effective CRISPR interference of an endogenous gene via a single transgene in mice. Sci Rep, 2019,9(1):17312. |
[39] | Ahmad HI, Ahmad MJ, Asif AR, Adnan M, Iqbal MK, Mehmood K, Muhammad SA, Bhuiyan AA, Elokil A, Du XY, Zhao CZ, Liu XD, Xie SS . A Review of CRISPR- Based genome editing: Survival, evolution and challenges. Curr Issues Mol Biol, 2018,28:47-68. |
[40] | Zhang K, Liu W, Liu XF, Chen YS, Liu XH, He ZY . Generation of cell strains containing point mutations in HPRT1 by CRISPR/Cas9. Hereditas (Beijing), 2019,41(10):939-949. |
张楷, 刘蔚, 刘小凤, 陈瑶生, 刘小红, 何祖勇 . 利用CRISPR/Cas9系统构建人HPRT1基因定点突变细胞株. 遗传, 2019,41(10):939-949. | |
[41] | Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA . Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 2015,160(6):1246-1260. |
[42] | Shi JJ, Zhao Y, Wang K, Shi XY, Wang Y, Huang HW, Zhuang YH, Cai T, Wang FC, Shao F . Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015,526(7575):660-665. |
[43] | Napier BA, Monack DM . Creating a RAW264.7 CRISPR- Cas9 genome wide library. Bio Protoc, 2017,7(10):1-10. |
[44] | Napier BA, Brubaker SW, Sweeney TE, Monette P, Rothmeier GH, Gertsvolf NA, Puschnik A, Carette JE, Khatri P, Monack DM . Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med, 2016,213(11):2365-2382. |
[45] | Liu H, Li DM, Zhu LY, Lai LJ, Yan WY, Lu YS, Wei Y, Huang YQ, Fang M, Su YG, Yang F, Shu W . Research on the knockout of LMNA gene by CRISPR/Cas9 system in human cell lines. Hereditas(Beijing), 2019,41(1):66-75. |
刘恒, 李东明, 朱兰玉, 赖乐锦, 闫婉云, 陆玉双, 韦伊, 黄月琪, 方媚, 苏元港, 杨芳, 舒伟 . 利用CRISPR/Cas9敲除人源细胞系中LMNA基因的研究. 遗传, 2019,41(1):66-75. | |
[46] | Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, Gozdecka M, Ohnishi S, Cooper J, Patel M, McKerrell T, Chen B, Domingues AF, Gallipoli P, Teichmann S, Ponstingl H, McDermott U, Saez-Rodriguez J, Huntly BJP, Iorio F, Pina C, Vassiliou GS, Yusa K. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep, 2016,17(4):1193-1205. |
[47] | Zotova A, Zotov I, Filatov A, Mazurov D . Determining antigen specificity of a monoclonal antibody using genome-scale CRISPR-Cas9 knockout library. J Immunol Methods, 2016,439:8-14. |
[48] | Covarrubias S, Robinson EK, Shapleigh B, Vollmers A, Katzan S, Hanley N, Fong N, McManus MT, Carpenter S. CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-κB reporter. J Biol Chem, 2017,292(51):20911-20920. |
[49] | Polstein LR, Gersbach CA . A light-inducible CRISPR- Cas9 system for control of endogenous gene activation. Nat Chem Biol, 2015,11(3):198-200. |
[50] | Zhang XC, Wang JM, Cheng QX, Zheng X, Zhao GP, Wang J . Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov, 2017,3:17018. |
[51] | Li L, Wei K, Zheng G, Liu X . CRISPR-Cpf1-Assisted multiplex genome editing and transcriptional repression in streptomyces. Appl Environ Microbiol, 2018,84(18):e00827-18. |
[52] | Depardieu F, Bikard D . Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels. Methods, 2019,172:61-75. |
[53] | Li W, Teng F, Li TD, Zhou Q . Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol, 2013,31(8):684-686. |
[54] | Huang JJ, Cao CW, Zheng GM, Zhao JG . Genome editing technologies drive the development of pig genetic improvement. Hereditas(Beijing), 2017,39(11):1078-1089. |
黄娇娇, 曹春伟, 郑国民, 赵建国 . 基因组编辑技术在猪遗传改良中的应用. 遗传, 2017,39(11):1078-1089. | |
[55] | Li S, Yang YY, Qiu Y, Chen YH, Xu LL, Ding QR . Applications of genome editing tools in precision medicine research. Hereditas(Beijing), 2017,39(3):177-188. |
李爽, 杨圆圆, 邱艳, 陈彦好, 徐璐薇, 丁秋蓉 . 基因组编辑技术在精准医学中的应用. 遗传, 2017,39(3):177-188. | |
[56] | Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS . Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013,13(6):659-662. |
[57] |
Zuo EW, Cai YJ, Li K, Wei Y, Wang BA, Sun YD, Liu Z, Liu JW, Hu XD, Wei W, Huo XN, Shi LY, Tang C, Liang D, Wang Y, Nie YH, Zhang CC, Yao X, Wang X, Zhou CY, Ying WQ, Wang QF, Chen RC, Shen Q, Xu GL, Li JS, Sun Q, Xiong ZQ, Yang H . One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9- mediated gene editing with multiple sgRNAs. Cell Res, 2017,27(7):933-945.
doi: 10.1038/cr.2017.81 |
[58] | Yan S, Tu ZC, LIU ZM, Fan NN, Yang HM, Yang S, Yang WL, Zhao Y, Ouyang Z, Lai CD, Yang HQ, Li L, Liu QS, Shi H, Xu GQ, Zhao H, Wei HJ, Pei Z, Li SH, Lai LX, Li XJ. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington's disease. Cell, 2018, 173(4): 989-1002.e13. |
[59] | Kimura Y, Hisano Y, Kawahara A, Higashijima SI . Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep, 2014,4:6545. |
[60] | Tong XL, Fang CY, Gai TT, Shi J, Lu C, Dai FY . Applications of the CRISPR/Cas9 system in insects. Hereditas(Beijing), 2018,40(4):266-278. |
童晓玲, 方春燕, 盖停停, 石津, 鲁成, 代方银 . CRISPR/ Cas9系统在昆虫中的应用. 遗传, 2018,40(4):266-278. | |
[61] | Liu PF, Wu Q . Probing 3D genome by CRISPR/Cas9. Hereditas (Beijing), 2020,42(1):18-31. |
刘沛峰, 吴强 . CRISPR/Cas9基因编辑在三维基因组研究中的应用. 遗传, 2020,42(1):18-31. | |
[62] | Wang J, Huang J, Xu R . Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies. Hereditas(Beijing), 2019,41(5):422-429. |
王珏, 黄娟, 许蕊 . 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑. 遗传, 2019,41(5):422-429. | |
[63] | Tang LC, Gu F . Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM. Hereditas (Beijing), 2020,42(3):236-249. |
唐连超, 谷峰 . CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM. 遗传, 2020,42(3):236-249. | |
[64] | Wen L, Tang FC . Single-cell sequencing in stem cell biology. Genome Biol, 2016,17:71. |
[65] | Li L, Dong J, Yan LY, Yong J, Liu XX, Hu YQ, Fan XY, Wu XL, Guo HS, Wang XY, Zhu XH, Li R, Yan J, Wei Y, Zhao YY, Wang W, Ren YX, Yuan P, Yan ZQ, Hu BQ, Guo F, Wen L, Tang FC, Qiao J . Single-Cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell, 2017,20(6):858-873. |
[66] | Bian SH, Hou Y, Zhou X, Li XL, Yong J, Wang YC, Wang WD, Yan J, Hu BQ, Guo HS, Wang JL, Gao S, Mao yn, Dong J, Zhu P, Xiu DR, Yan LY, Wen L, Qiao J, Tang FC, Fu W. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science, 2018,362(6418):1060-1063. |
[67] | Kanesaka Y, Okada M, Ito S, Oyama T . Monitoring single- cell bioluminescence of Arabidopsis leaves to quantitatively evaluate the efficiency of a transiently introduced CRISPR/Cas9 system targeting the circadian clock gene ELF3. Plant Biotechnol, 2019,36(3):187-193. |
[68] | Diaz-Hernandez ME, Khan NM, Trochez CM, Yoon T, Maye P, Presciutti SM, Gibson G, Drissi H . Derivation of notochordal cells from human embryonic stem cells reveals unique regulatory networks by single cell-transcriptomics. J Cell Physiol, 2019,235(6):5241-5255. |
[1] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[2] | 于一凡, 欧阳臻, 郭娟, 赵瑜君, 黄璐琦. 植物质体基因工程调控元件研究进展[J]. 遗传, 2023, 45(6): 501-513. |
[3] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[4] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[5] | 张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[6] | 刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[7] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[8] | 杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[9] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[10] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[11] | 徐海冬, 宁博林, 牟芳, 李辉, 王宁. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. |
[12] | 徐志伟, 魏云林, 季秀玲. 假单胞菌噬菌体基因组学研究进展[J]. 遗传, 2020, 42(8): 752-759. |
[13] | 王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[14] | 李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[15] | 陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: