遗传 ›› 2020, Vol. 42 ›› Issue (8): 752-759.doi: 10.16288/j.yczz.19-272
收稿日期:
2020-04-26
修回日期:
2020-07-10
出版日期:
2020-08-20
发布日期:
2020-07-29
通讯作者:
季秀玲
E-mail:jixiuling1023@126.com
作者简介:
徐志伟,在读硕士研究生,专业方向:低温微生物。E-mail: 基金资助:
Xu Zhiwei, Wei Yunlin, Ji Xiuling()
Received:
2020-04-26
Revised:
2020-07-10
Online:
2020-08-20
Published:
2020-07-29
Contact:
Ji Xiuling
E-mail:jixiuling1023@126.com
Supported by:
摘要:
假单胞菌属(Pseudomonas spp.)是地球上重要的生态菌群之一,广泛分布于淡水、土壤等生态环境。假单胞菌噬菌体是以假单胞菌为宿主的病毒,不仅影响宿主的生存状况和进化过程,而且在生物物质循环和能量流动中扮演着重要角色。随着基因组测序技术的飞速发展,许多假单胞菌噬菌体的全基因组测序工作已经完成。截至2020年7月,GenBank收录的假单胞菌噬菌体基因组数有247条,占全部病毒基因组(10,069条)的2.45%。由于假单胞菌噬菌体基因组大小差异较大、遗传含量不同、基因组之间相似性较低,因此对假单胞菌噬菌体基因组的研究相对较少。本文主要对假单胞菌噬菌体基因组的特点、遗传多样性和功能基因方面的研究进行了综述,以期为理解细菌和噬菌体的对抗性共进化作用以及噬菌体的遗传进化提供参考。
徐志伟, 魏云林, 季秀玲. 假单胞菌噬菌体基因组学研究进展[J]. 遗传, 2020, 42(8): 752-759.
Xu Zhiwei, Wei Yunlin, Ji Xiuling. Progress on phage genomics of Pseudomonas spp.[J]. Hereditas(Beijing), 2020, 42(8): 752-759.
图1
铜绿假单胞菌与噬菌体D3112的遗传图谱 A:铜绿假单胞菌遗传图;B:噬菌体D3112遗传图。遗传图谱上方是G+C含量的图形表示,与基因图谱按比例绘制。中间部分显示了D3112预测的ORF及其方向,由实心箭头表示。每个箭头下方的数字对应于ORF编号,每个箭头上方的名称标识具有高度相似性的已知蛋白质。黑色箭头A、B、c表示3个先前测序的基因,白色箭头表示与已知蛋白质相似的ORF,灰色箭头表示未知的ORF。左侧方框表示与噬菌体D3112宿主高度相似的细菌,阴影表示不同程度的相似性。NmZ:脑膜炎奈瑟球菌Z2491;NmM:脑膜炎奈瑟球菌MC58;So:S. oneidensis;Hi:流感嗜血杆菌;SeTy:肠炎沙门氏菌;StLT2:肠炎链球菌LT2;EcO:大肠杆菌O157:H7;Ec:大肠杆菌;Sf:弗氏志贺菌;Mu:肠噬菌体Mu;PA:铜绿假单胞菌;Pss:丁香属;Pf:荧光假单胞菌;Pp:恶臭假单胞菌;Xf:X. fastidiosa。框内的星号表示基于期望值与D3112 ORF具有最高相似性的物种,菱形显示通过贝叶斯方法与D3112 ORF最密切相关的物种,而三角形显示通过邻点连接法与D3112 ORF最密切相关的物种。"
[1] |
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW . Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev, 2011,35(4):652-680.
doi: 10.1111/j.1574-6976.2011.00269.x pmid: 21361996 |
[2] | Czajkowski R, Ozymko Z, de Jager V, Siwinska J, Smolarska A, Ossowicki A, Narajczyk M, Lojkowska E. Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS ONE, 2015,10(3):1-23. |
[3] |
Olszak T, Latka A, Roszniowski B, Valvano MA, Drulis- Kawa Z . Phage life cycles behind bacterial biodiversity. Curr Med Chem, 2017,24(36):3987-4001.
doi: 10.2174/0929867324666170413100136 pmid: 28412903 |
[4] |
Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature, 2019,574(7779):549-552.
doi: 10.1038/s41586-019-1662-9 pmid: 31645729 |
[5] | Li TM, Du B . CRISPR-Cas system and coevolution of bacteria and phages. Hereditas(Beijing), 2011,33(3):213-218. |
李铁民, 杜波 . CRISPR-Cas系统与细菌和噬菌体的共进化. 遗传, 2011,33(3):213-218. | |
[6] |
Ceyssens PJ, Hertveldt K, Ackermann HW, Noben JP, Demeke M, Volckaert G, Lavigne R . The intron-containing genome of the lytic Pseudomonas phage LUZ24 resembles the temperate phage PaP3. Virology, 2008,377(2):233-238.
doi: 10.1016/j.virol.2008.04.038 pmid: 18519145 |
[7] |
Ceyssens PJ, Mesyanzhinov V, Sykilinda N, Briers Y, Roucourt B, Lavigne R, Robben J, Domashin A, Miroshnikov K, Volckaert G, Hertveldt K . The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6. Journal of bacteriology, 2007,190(4):1429-1435.
doi: 10.1128/JB.01441-07 pmid: 18065532 |
[8] |
Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A, Ford ME, Gonda RM, Houtz JM, Hryckowian AJ, Kelchner VA, Namburi S, Pajcini KV, Popovich MG, Schleicher DT, Simanek BZ, Smith AL, Zdanowicz GM, Kumar V, Peebles CL, Jacobs WR Jr, Lawrence JG, Hendrix RW . Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet, 2006,2(6):e92.
doi: 10.1371/journal.pgen.0020092 pmid: 16789831 |
[9] |
Amgarten D, Martins LF, Lombardi KC, Antunes LP, de Souza APS, Nicastro GG, Kitajima EW, Quaggio RB, Upton C, Setubal JC, da Silva AM. Three novel Pseudomonas phages isolated from composting provide insights into the evolution and diversity of tailed phages. BMC Genomics, 2017,18(1):346-363.
doi: 10.1186/s12864-017-3729-z pmid: 28472930 |
[10] |
Wang PW, Chu LD, Guttman DS . Complete sequence and evolutionary genomic analysis of the pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol, 2004,186(2):400-410.
doi: 10.1128/jb.186.2.400-410.2004 pmid: 14702309 |
[11] |
Ha AD, Denver DR . Comparative genomic analysis of 130 bacteriophages Infecting bacteria in the genus Pseudomonas. Front Microbiol, 2018,9:1456.
doi: 10.3389/fmicb.2018.01456 pmid: 30022972 |
[12] |
Wittmann J, Dreiseikelmann B, Rohde M, Meier-Kolthoff JP, Bunk B, Rohde C . First genome sequences of achromobacter phages reveal new members of the N4 family. Virol J, 2014,11(1):2-15.
doi: 10.1186/1743-422X-11-2 |
[13] |
Sillankorva S, Kluskens LD, Lingohr EJ, Kropinski AM, Neubauer P, Azeredo J . Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A. Virol J, 2011,8:142.
doi: 10.1186/1743-422X-8-142 pmid: 21439081 |
[14] |
Lu SG, Le S, Tan YL, Zhu JM, Li M, Rao XC, Zou LY, Li S, Wang J, Jin XL, Huang GT, Zhang L, Zhao X, Hu FQ . Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS One, 2013,8(5):e62933.
doi: 10.1371/journal.pone.0062933 pmid: 23675441 |
[15] |
Kwan T, Liu J, Dubow M, Gros P, Pelletier J . Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol, 2006,188(3):1184-1187.
doi: 10.1128/JB.188.3.1184-1187.2006 pmid: 16428425 |
[16] |
Watkins SC, Sible E, Putonti C . Pseudomonas PB1-Like phages: whole genomes from metagenomes offer insight into an abundant group of bacteriophages. Viruses, 2018,10(1):331-344.
doi: 10.3390/v10060331 |
[17] |
Li M, Chen XR, Ma YS, Li ZB, Zhao QC . Complete genome sequence of PFP1, a novel T7-like Pseudomonas fluorescens bacteriophage. Arch Virol, 2018,163(1):3423-3426.
doi: 10.1007/s00705-018-3979-3 |
[18] |
Lu SG, Le S, Tan YL, Li M, Liu C, Zhang KB, Huang JJ, Chen HM, Rao XC, Zhu JM, Zou LY, Ni QS, Li S, Wang J, Jin XL, Hu QW, Yao XY, Zhao X, Zhang L, Huang GT, Hu FQ . Unlocking the mystery of the hard-to-sequence phage genome: PaP1 methylome and bacterial immunity. BMC Genomics, 2014,15(1):803-815.
doi: 10.1186/1471-2164-15-803 |
[19] |
Aparicio T, de Lorenzo V, Martínez-García E . Improved thermotolerance of genome-reduced Pseudomonas putida EM42 enables effective functioning of the PL/cI857 system. Biotechnol J, 2019,14(1):1800483.
doi: 10.1002/biot.v14.1 |
[20] |
Zhang FJ, Huang KC, Yang XJ, Sun L, You JJ, Pan XW, Cui XL, Yang HJ . Characterization of a novel lytic podovirus O4 of Pseudomonas aeruginosa. Arch Virol, 2018,163(1):2377-2383.
doi: 10.1007/s00705-018-3866-y |
[21] | Carson S, Bruff E, DeFoor W, Dums J, Groth A, Hatfield T, Iyer A, Joshi K, McAdams S, Miles D, Miller D, Oufkir A, Raynor B, Riley S, Roland S, Rozier H, Talley S, Miller ES. Genome sequences of six paenibacillus larvae Siphoviridae Phages. Genome Announc, 2015,3(3):101-115. |
[22] |
Tang CF, Deng CJ, Zhang Y, Xiao C, Wang J, Rao XC, Hu FQ, Lu SG . Characterization and genomic analyses of Pseudomonas aeruginosa podovirus TC6: establishment of genus Pa11virus. Front Microbiol, 2018,9:2561.
doi: 10.3389/fmicb.2018.02561 pmid: 30410478 |
[23] | Xu B, GAO J, GUO XK, Qin JH . Study on the biological and genomic characteristics of Pseudomonas aeruginosa phage D204. J Shanghai Jiaotong Univ, 2016,36(1):1-5. |
徐彬, 高晶, 郭晓奎, 秦金红 . 铜绿假单胞菌噬菌体D204的生物学特性和基因组学研究. 上海交通大学学报, 2016,36(1):1-5. | |
[24] | Cui XL . Screening of genes related to pseudomonas aeruginosa response to multiple strains of phage infection and functional annotation of phage C11 genome [Dissertation]. Sc i Tech of Tianjin Univ, 2016. |
崔晓莉 . 铜绿假单胞菌应答多株噬菌体感染相关基因的筛选及噬菌体C11基因组的功能注释[学位论文]. 天津科技大学, 2016. | |
[25] |
Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, Vairale MG . Bacteriophages and its applications: an overview. Folia Microbiol (Praha), 2017,62(1):17-55.
doi: 10.1007/s12223-016-0471-x |
[26] |
Cao HL, Lai Y, Bougouffa S, Xu ZL, Yan AX . Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853. BMC Genomics, 2017,18(1):459-475.
doi: 10.1186/s12864-017-3842-z pmid: 28606056 |
[27] |
De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk K, Lavigne R . Pseudomonas predators: understanding and exploiting phage-host interactions. Nat Rev Microbiol, 2017,15(9):517-530.
doi: 10.1038/nrmicro.2017.61 pmid: 28649138 |
[28] | Liang CJ, Meng FM, Ai YC . CRISPR/Cas systems in genome engineering of bacteriophages. Hereditas(Beijing), 2018,40(5):378-389. |
梁彩娇, 孟繁梅, 艾云灿 . 基于CRISPR/Cas系统的噬菌体基因组编辑. 遗传, 2018,40(5):378-389. | |
[29] |
Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR . A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio, 2014,5(2):e00896.
doi: 10.1128/mBio.00896-14 pmid: 24736222 |
[30] |
Habusha M, Tzipilevich E, Fiyaksel O, Ben-Yehuda S . A mutant bacteriophage evolved to infect resistant bacteria gained a broader host range. Mol Microbiol, 2019,111(6):1463-1475.
doi: 10.1111/mmi.14231 pmid: 30811056 |
[31] |
Holguín AV, Cárdenas P, Prada-Peñaranda C, Rabelo Leite L, Buitrago C, Clavijo V, Oliveira G, Leekitcharoenphon P, Møller Aarestrup F, Vives MJ . Host resistance, genomics and population dynamics in a salmonella Eenteritidis and phage system. Viruses, 2019,11(2):188.
doi: 10.3390/v11020188 |
[32] | Li M, Cheng FY, Gong LY, Xiang H . Systematic discovery of novel prokaryotic defense systems: progress and prospects. Hereditas(Beijing), 2018,40(4):259-265. |
李明, 程飞跃, 龚路遥, 向华 . 微生物新型防御系统的系统性发现与展望. 遗传, 2018,40(4):259-265. | |
[33] | Gao SH, Yu HY, Wu SY, Wang S, Geng JN, Luo YF, Hu SN . Advances of sequencing and assembling technologies for complex genomes. Hereditas(Beijing), 2018,40(11):944-963. |
高胜寒, 禹海英, 吴双阳, 王森, 耿佳宁, 骆迎峰, 胡松年 . 复杂基因组测序技术研究进展. 遗传, 2018,40(11):944-963. | |
[34] |
Sternberg SH, Richter H, Charpentier E, Qimron U . Adaptation in CRISPR-Cas systems. Mol Cell, 2016,61(6):797-808.
doi: 10.1016/j.molcel.2016.01.030 pmid: 26949040 |
[1] | 骆红波, 曹鹏博, 周钢桥. DNA甲基化驱动的转录表达特征作为肝癌预后预测标志物的价值[J]. 遗传, 2020, 42(8): 775-787. |
[2] | 刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443. |
[3] | 师睿, 张毅, 王雅春, 黄涛, 卢国昌, 岳涛, 卢振西, 黄锡霞, 卫新璞, 冯书堂, 陈军, 乌兰·卡格德尔, 茹先古丽·阿不力孜, 努尔胡马尔·木合塔尔. 利用SNP芯片信息评估新疆近交牛基因组纯合度[J]. 遗传, 2020, 42(5): 493-505. |
[4] | 赵文明, 宋述慧, 陈梅丽, 邹东, 马利娜, 马英克, 李茹姣, 郝丽丽, 李翠萍, 田东梅, 唐碧霞, 王彦青, 朱军伟, 陈焕新, 章张, 薛勇彪, 鲍一明. 2019新型冠状病毒信息库[J]. 遗传, 2020, 42(2): 212-221. |
[5] | 杨岸奇, 陈斌, 冉茂良, 杨广民, 曾诚. 基因组选择在猪杂交育种中的应用[J]. 遗传, 2020, 42(2): 145-152. |
[6] | 刘沛峰, 吴强. CRISPR/Cas9基因编辑在三维基因组研究中的应用[J]. 遗传, 2020, 42(1): 18-31. |
[7] | 吕红强, 郝乐乐, 刘二虎, 吴志芳, 韩九强, 刘源. 基于生物信息学的Hi-C研究现状与发展趋势[J]. 遗传, 2020, 42(1): 87-99. |
[8] | 张雨, 方玉达. Cohesin结构及功能研究进展[J]. 遗传, 2020, 42(1): 57-72. |
[9] | 杨科, 薛征, 吕湘. 细胞终末分化过程中三维基因组结构与功能调控的分子机制[J]. 遗传, 2020, 42(1): 32-44. |
[10] | 梁承志. 从作物基因组分析到整合组学知识库建设[J]. 遗传, 2019, 41(9): 875-882. |
[11] | 刘永鑫,秦媛,郭晓璇,白洋. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845-862. |
[12] | 史晓黎,何伊琳,凌宏清. 小麦A基因组测序与进化研究进展[J]. 遗传, 2019, 41(9): 836-844. |
[13] | 张秀泉,王建,熊符,吕伟标,周远青,杨少民,张玉婷,田小燕,连蔚,徐湘民. 染色体10q24.31片段重复导致先天性缺指/缺趾畸形的一个家系致病机理分析[J]. 遗传, 2019, 41(8): 716-724. |
[14] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[15] | 郑建敏,罗江陶,万洪深,李式昭,杨漫宇,李俊,杨恩年,蒋云,刘于斌,王相权,蒲宗君. 四川省小麦育成品种系谱分析及发展进程[J]. 遗传, 2019, 41(7): 599-610. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: