遗传 ›› 2023, Vol. 45 ›› Issue (6): 526-535.doi: 10.16288/j.yczz.23-057
收稿日期:
2023-03-14
修回日期:
2023-04-11
出版日期:
2023-06-20
发布日期:
2023-05-29
通讯作者:
朴春兰
E-mail:1399745127@qq.com;2488335116@qq.com
作者简介:
李菲菲,在读硕士研究生,专业方向:植物花发育。E-mail: 基金资助:
Feifei Li(), Yanmin Hao, Minlong Cui, Chunlan Piao()
Received:
2023-03-14
Revised:
2023-04-11
Online:
2023-06-20
Published:
2023-05-29
Contact:
Piao Chunlan
E-mail:1399745127@qq.com;2488335116@qq.com
Supported by:
摘要:
MYB是植物中最大的转录因子家族之一,其中R3-MYB转录因子RADIALIS (RAD)在金鱼草(Antirrhinum majus)花发育过程中具有十分重要的作用。本研究对金鱼草基因组进行分析,发现1个与RAD结构相似的R3-MYB基因,将其命名为AmRADIALIS-like 1(AmRADL1)。进一步通过生物信息学预测基因功能,利用qRT-PCR分析AmRADL1在野生型金鱼草不同组织器官中的相对表达量,对过表达AmRADL1的转基因金鱼草进行形态学观察和组织学染色分析。结果表明,AmRADL1基因开放阅读框(open reading frame,ORF)长度为306 bp,编码101个氨基酸,具有典型的SANT结构域,C末端含有CREB motif,与番茄(Solanum lycopersicum)SlFSM1同源性较高。qRT-PCR结果表明,AmRADL1在根、茎、叶和花中均有表达,其中在花中表达量较高;进一步分析其在不同花器官中的表达量差异,发现AmRADL1在心皮中表达最高。转基因金鱼草植株的组织学染色分析结果显示,与野生型相比,转基因植株的心皮细胞大小没有明显的变化,但心皮中胎座区域变小,细胞数目减少。综上所述,AmRADL1可能参与调控心皮发育,但在心皮中的具体作用机制还有待进一步研究。
李菲菲, 郝燕敏, 崔敏龙, 朴春兰. 金鱼草RADIALIS-like 1基因克隆与功能研究[J]. 遗传, 2023, 45(6): 526-535.
Feifei Li, Yanmin Hao, Minlong Cui, Chunlan Piao. Cloning and functional analysis of RADIALIS-like 1 gene from Antirrhinum majus[J]. Hereditas(Beijing), 2023, 45(6): 526-535.
[1] |
Thomson B, Wellmer F. Molecular regulation of flower development. Curr Top Dev Biol, 2019, 131: 185-210.
doi: S0070-2153(18)30086-3 pmid: 30612617 |
[2] |
Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants, 2013, 19(3): 307-321.
doi: 10.1007/s12298-013-0179-1 |
[3] |
Qian JH, Li ZQ, Liao XF, Tang DF, Shi QQ, Zhou RY, Chen P. Advance on MYB transcription factors in regulating plant flower development. Letter Biotechnol, 2016, 27(2): 283-288.
doi: 10.1007/s10529-005-1811-0 |
钱景华, 李增强, 廖小芳, 汤丹峰, 史奇奇, 周瑞阳, 陈鹏. 调控植物花发育的MYB类转录因子研究进展. 生物技术通讯, 2016, 27(2): 283-288.
doi: 10.1007/s10529-005-1811-0 |
|
[4] |
Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37.
doi: 10.1038/353031a0 |
[5] |
Corley SB, Carpenter R, Copsey L, Coen E. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci USA, 2005, 102(14): 5068-5073.
pmid: 15790677 |
[6] |
Wang SS, Koide Y, Kishima Y.How to establish a mutually beneficial relationship between a transposon and its host: lessons from Tam3 in Antirrhinum. Genes Genet Syst, 2022, 97(4): 177-184.
doi: 10.1266/ggs.22-00063 |
[7] |
Schwinn K, Venail J, Shang YJ, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell, 2006, 18(4): 831-851.
doi: 10.1105/tpc.105.039255 pmid: 16531495 |
[8] |
Perez-Rodriguez M, Jaffe FW, Butelli E, Glover BJ, Martin C. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development, 2005, 132(2): 359-370.
doi: 10.1242/dev.01584 pmid: 15604096 |
[9] |
Cui ML, Copsey L, Green AA, Bangham JA, Coen E. Quantitative control of organ shape by combinatorial gene activity. PLoS Biol, 2010, 8(11): e1000538.
doi: 10.1371/journal.pbio.1000538 |
[10] |
Li MM, Zhang DF, Gao Q, Luo YF, Zhang H, Ma B, Chen CH, Whibley A, Zhang YE, Cao YH, Li Q, Guo H, Li JH, Song YZ, Zhang Y, Copsey L, Li Y, Li XX, Qi M, Wang JW, Chen Y, Wang D, Zhao JY, Liu GC, Wu B, Yu LL, Xu CY, Li J, Zhao SC, Zhang YJ, Hu SN, Liang CZ, Yin Y, Coen E, Xue YB. Genome structure and evolution of Antirrhinum majus L. Nat Plants, 2019, 5(2): 174-183.
doi: 10.1038/s41477-018-0349-9 |
[11] |
Vincent CA, Coen ES. A temporal and morphological framework for flower development in Antirrhinum majus. Can J Bot, 2004, 82(5): 681-690.
doi: 10.1139/b04-042 |
[12] |
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG.Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21): 2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036 |
[13] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[14] |
Cui ML, Handa T, Ezura H. An improved protocol for Agrobacterium-mediated transformation of Antirrhinum majus L. Mol Genet Genomics, 2003, 270(4): 296-302.
pmid: 14513365 |
[15] | Hao YM, Chen KL, Feng LJ, Li FF, Cui ML, Piao CL.Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris. J Zhejiang A F Univ, 2022, 39(4): 821-829. |
郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰. 欧洲千里光SvAPETALA1基因的克隆及功能分析. 浙江农林大学学报, 2022, 39(4): 821-829. | |
[16] | Yang BC, Song ZH, Li CN, Jiang JH, Zhou YY, Wang RP, Wang Q, Ni C, Liang Q, Chen HD, Fan LM. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genet, 2018, 14(12): e1007839. |
[17] |
Barg R, Sobolev I, Eilon T, Gur A, Chmelnitsky I, Shabtai S, Grotewold E, Salts Y. The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta, 2005, 221(2): 197-211.
doi: 10.1007/s00425-004-1433-0 |
[18] |
Su SH, Xiao W, Guo WX, Yao XR, Xiao JQ, Ye ZQ, Wang N, Jiao KY, Lei MQ, Peng QC, Hu XH, Huang X, Luo D. The CYCLOIDEA-RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytol, 2017, 215(4): 1582-1593.
doi: 10.1111/nph.2017.215.issue-4 |
[19] |
Boyer LA, Latek RR, Peterson CL. The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 2004, 5(2): 158-163.
doi: 10.1038/nrm1314 |
[20] |
Zhong JS, Preston JC, Hileman LC, Kellogg EA. Repeated and diverse losses of corolla bilateral symmetry in the Lamiaceae. Ann Bot, 2017, 119(7): 1211-1223.
doi: 10.1093/aob/mcx012 |
[21] |
Zhang F, Liu X, Zuo KJ, Zhang JQ, Sun XF, Tang KX. Molecular cloning and characterization of a novel Gossypium barbadense L.RAD-like gene. Plant Mol Biol Rep, 2011, 29(2): 324-333.
doi: 10.1007/s11105-010-0234-9 |
[22] |
Madrigal Y, Alzate JF, González F, Pabón-Mora N. Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots. Am J Bot, 2019, 106(3): 334-351.
doi: 10.1002/ajb2.1243 pmid: 30845367 |
[23] |
Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM.CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant Physiol, 2009, 150(2): 834-843.
doi: 10.1104/pp.108.133272 |
[24] |
Pesch M, Schultheiß I, Digiuni S, Uhrig JF, Hülskamp M.Mutual control of intracellular localisation of the patterning proteins AtMYC1, GL1 and TRY/CPC in Arabidopsis. Development, 2013, 140(16): 3456-3467
doi: 10.1242/dev.094698 pmid: 23900543 |
[25] |
Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L.MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J, 2008, 55(6): 940-953.
doi: 10.1111/tpj.2008.55.issue-6 |
[26] |
Boyden GS, Donoghue MJ, Howarth DG. Duplications and expression of RADIALIS-like genes in Dipsacales. Int J Plant Sci, 2012, 173(9): 971-983.
doi: 10.1086/667626 |
[27] |
Preston JC, Kost MA, Hileman LC. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytol, 2009, 182(3): 751-762.
doi: 10.1111/j.1469-8137.2009.02794.x pmid: 19291006 |
[28] | Valoroso MC, Paolo SD, Iazzetti G, Aceto S. Transcriptome-wide identification and expression analysis of DIVARICATA- and RADIALIS-like genes of the mediterranean Orchid Orchis italica. Genome Biol Evol, 2017, 9(6): evx101. |
[29] | Guo SK, Zeng CR, Wu Y, Li J, LI XG, Yang YD. Cloning and expression analysis of coconut CnRADIALIS-like transcription factor. Chinese Journal of Tropical Crops, 2021, 42(09): 2478-2486. |
郭树宽, 曾春茹, 吴翼, 李静, 李新国, 杨耀东. 椰子CnRADIALIS-like转录因子的克隆与表达分析. 热带作物学报, 2021, 42(09): 2478-2486. | |
[30] |
Baxter CEL, Costa MMR, Coen ES. Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J, 2007, 52(1): 105-113.
doi: 10.1111/j.1365-313X.2007.03222.x |
[31] |
Stevenson CE, Burton N, Costa MMR, Nath U, Dixon RA, Coen ES, Lawson DM. Crystal structure of the MYB domain of the RAD transcription factor from Antirrhinum majus. Proteins, 2006, 65(4): 1041-1045.
doi: 10.1002/prot.21136 |
[32] | Ge J, Zhang Y, Zheng ZZ, Huang YW, Song HS. Research progress on CREB and the signal transduction pathway of its phosphorylation. J Anhui Agric Sci, 2010, 38(30): 16769-16771,16774. |
葛军, 张玉, 郑增长, 黄延旺, 宋红生. CREB转录因子及其磷酸化信号通路的研究进展. 安徽农业科学, 2010, 38(30): 16769-16771,16774. | |
[33] |
Sengupta A, Hileman LC. A CYC-RAD-DIV-DRIF interaction likely pre-dates the origin of floral monosymmetry in Lamiales. Evodevo, 2022, 13(1): 3.
doi: 10.1186/s13227-021-00187-w pmid: 35093179 |
[34] |
Machemer K, Shaiman O, Salts Y, Shabtai S, Sobolev I, Belausov E, Grotewold E, Barg R. Interplay of MYB factors in differential cell expansion, and consequences for tomato fruit development. Plant J, 2011, 68(2): 337-350.
doi: 10.1111/j.1365-313X.2011.04690.x |
[35] |
Masuda K, Ikeda Y, Matsuura T, Kawakatsu T, Tao R, Kubo Y, Ushijima K, Henry IM, Akagi T. Reinvention of hermaphroditism via activation of a RADIALIS-like gene in hexaploid persimmon. Nat Plants, 2022, 8(3): 217-224.
doi: 10.1038/s41477-022-01107-z pmid: 35301445 |
[36] |
Müller BM, Saedler H, Zachgo S. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant J, 2001, 28(2): 169-179.
pmid: 11722760 |
[37] | Callens C, Tucker MR, Zhang DB, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. J Exp Bot, 2018, 69(10): 2435-2459. |
[38] |
Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, de Folter S. Gynoecium development: networks in Arabidopsis and beyond. J Exp Bot, 2019, 70(5): 1447-1460.
doi: 10.1093/jxb/erz026 pmid: 30715461 |
[1] | 栾思楠, 刘乐乐, 周佳圆, 努尔阿斯娅·伊马木, 崔敏龙, 朴春兰. 欧洲千里光花发育相关基因SvGLOBOSA功能研究[J]. 遗传, 2022, 44(6): 521-530. |
[2] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[3] | 张丽珍, 张永, 胡景华, 王子龙, 曾志将. 中华蜜蜂酪胺受体基因克隆及表达分析[J]. 遗传, 2018, 40(2): 155-161. |
[4] | 郭文雅,崔艳梅,王婷婷,喻德跃,黄方. 野生大豆花发育相关基因GsLFY的功能研究[J]. 遗传, 2017, 39(1): 56-65. |
[5] | 常建忠, 闫凤霞, 乔麟轶, 郑军, 张福耀, 柳青山. 高粱SBP-box基因家族全基因组鉴定及表达分析[J]. 遗传, 2016, 38(6): 569-580. |
[6] | 谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥, 周宗山, 董庆龙. 桃WRKY基因家族全基因组鉴定和表达分析[J]. 遗传, 2016, 38(3): 254-270. |
[7] | 吴骏,张俊红,黄蒙慧,朱敏慧,童再康. 光皮桦miR164及其靶基因NAC1在低氮胁迫中的表达分析[J]. 遗传, 2016, 38(2): 155-162. |
[8] | 马建江, 王诺菡, 吴嫚, 裴文锋, 王文魁, 李兴丽, 张金发, 喻树迅, 于霁雯. 雷蒙德氏棉和亚洲棉基因组数据中LPAAT基因家族的发掘及其同源基因在陆地棉材料中的表达分析[J]. 遗传, 2015, 37(7): 692-701. |
[9] | 周坤, 张今今. 植物中的NO及其对花发育的调节[J]. 遗传, 2014, 36(7): 661-668. |
[10] | 刘云飞,万红建,杨悦俭,韦艳萍,李志邈,叶青静,王荣青,阮美颖,姚祝平,周国治. 番茄热激蛋白90的全基因组鉴定及分析[J]. 遗传, 2014, 36(10): 1043-1052. |
[11] | 黄国文 韩玉珍 傅永福. 拟南芥SUA41基因的表达和功能分析[J]. 遗传, 2013, 35(1): 93-100. |
[12] | 杨立伟,施季森. 不同浓度外源IAA处理对杉木茎部基因表达的影响[J]. 遗传, 2012, 34(4): 472-484. |
[13] | 焦莎莎,刘卡,李刚,高剑峰,马润林. 绵羊MHC区段3个预测基因的验证与表达分析[J]. 遗传, 2011, 33(12): 1353-1358. |
[14] | 鲍永美,刘永惠,许冬清,黄骥,王州飞,王建飞,张红生. 水稻Qb-SNARE蛋白OsNPSN11多克隆抗体制备、鉴定与应用[J]. 遗传, 2010, 32(9): 961-965. |
[15] | 陶倩怡,李征,何欢乐,潘俊松,蔡润. 黄瓜单性花决定基因M的表达分析[J]. 遗传, 2010, 32(6): 632-638. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: