[1] | Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet, 2005, 6( 2): 95-108. | [2] | Han JW, Zhang XJ. Current status of genome-wide association study. Hereditas (Beijing), 2011, 33(1): 25-35. | [2] | 韩建文, 张学军. 全基因组关联研究现状. 遗传, 2011, 33(1): 25-35. | [3] | Yan WL. Genome-wide association study on complex diseases: genetic statistical issues. Hereditas (Beijing), 2008, 30(5): 543-549. | [3] | 严卫丽. 复杂疾病全基因组关联研究进展——遗传统计分析. 遗传, 2008, 30(5): 543-549. | [4] | Yan WL. Genome-wide association study on complex diseases: study design and genetic markers. Hereditas (Beijing), 2008, 30(4): 400-406. | [4] | 严卫丽. 复杂疾病全基因组关联研究进展——研究设计和遗传标记. 遗传, 2008, 30(4): 400-406. | [5] | Uitterlinden AG. An introduction to genome-wide association studies: GWAS for dummies. Semin Reprod Med, 2016, 34( 4): 196-204. | [6] | Zhou JP, Pei ZY, Chen YB, Chen RS. Strategies of genome-wide association study based on high-throughput sequencing. Hereditas (Beijing), 2014, 36(11): 1099-1111. | [6] | 周家蓬, 裴智勇, 陈禹保, 陈润生. 基于高通量测序的全基因组关联研究策略. 遗传, 2014, 36(11): 1099-1111. | [7] | Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet, 2010, 11( 1): 31-46. | [8] | Zhu ZH, Zhang FT, Hu H, Bakshi A, Robinson MR, Powell JE, Montgomery GW, Goddard ME, Wray NR, Visscher PM, Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet, 2016, 48( 5):481-487. | [9] | Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308( 5720): 385-389. | [10] | Power RA, Parkhill J, de Oliveira T. Microbial genome-wide association studies: lessons from human GWAS. Nat Rev Genet, 2017, 18( 1): 41-50. | [11] | Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM. Common SNPs explain a large proportion of the heritability for human height. Nat Genet, 2010, 42( 7): 565-569. | [12] | Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88( 1): 76-82. | [13] | Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet, 2013, 14( 8): 549-558. | [14] | GWAS Catalog. The NHGRI-EBI Catalog of published genome-wide association studies.[2016-12-10]. The NHGRI-EBI Catalog of published genome-wide association studies. [2016-12-10]. . | [15] | Wu C, Hu ZB, He ZH, Jia WH, Wang F, Zhou YF, Liu ZH, Zhan QM, Liu Y, Yu DK, Zhai K, Chang J, Qiao Y, Jin GF, Liu Z, Shen YY, Guo CH, Fu JH, Miao XP, Tan W, Shen HB, Ke Y, Zeng YX, Wu TC, Lin DX. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat Genet, 2011, 43( 7): 679-684. | [16] | Shi YY, Hu ZB, Wu C, Dai JC, Li HZ, Dong J, Wang ML, Miao XP, Zhou YF, Lu F, Zhang HZ, Hu LM, Jiang Y, Li ZQ, Chu MJ, Ma HX, Chen JP, Jin GF, Tan WC, Wu TC, Zhang ZD, Lin DX, Shen HB. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet, 2011, 43( 12): 1215-1218. | [17] | Wu C, Miao XP, Huang LM, Che X, Jiang GL, Yu DK, Yang XH, Cao GW, Hu ZB, Zhou YJ, Zuo CH, Wang CY, Zhang XH, Zhou YF, Yu XJ, Dai WJ, Li ZS, Shen HB, Liu LM, Chen YL, Zhang S, Wang XQ, Zhai K, Chang J, Liu Y, Sun MH, Cao W, Gao J, Ma Y, Zheng XW, Cheung ST, Jia YF, Xu J, Tan W, Zhao P, Wu TC, Wang CF, Lin DX. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet, 2011, 44( 1): 62-66. | [18] | Bei JX, Li Y, Jia WH, Feng BJ, Zhou GQ, Chen LZ, Feng QS, Low HQ, Zhang HX, He FC, Tai ES, Kang T, Liu ET, Liu JJ, Zeng YX. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet, 2010, 42( 7): 599-603. | [19] | Zhang FR, Liu H, Chen SM, Low HQ, Sun LD, Cui Y, Chu TS, Li Y, Fu XA, Yu YX, Yu GQ, Shi BQ, Tian HQ, Liu DC, Yu XL, Li JH, Lu N, Bao FF, Yuan CY, Liu J, Liu HX, Zhang L, Sun YH, Chen MF, Yang Q, Yang HT, Yang RD, Zhang LH, Wang Q, Liu H, Zuo FG, Zhang HZ, Khor CC, Hibberd ML, Yang S, Liu JJ, Zhang XJ. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet, 2011, 43( 12): 1247-1251. | [20] | Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH, Zhu QX, Zhou HS, Ellinghaus E, Zhang FR, Pu XM, Yang XQ, Zhang JZ, Xu AE, Wu RN, Xu LM, Peng L, Helms CA, Ren YQ, Zhang C, Zhang SM, Nair RP, Wang HY, Lin GS, Stuart PE, Fan X, Chen G, Tejasvi T, Li P, Zhu J, Li ZM, Ge HM, Weichenthal M, Ye WZ, Zhang C, Shen SK, Yang BQ, Sun YY, Li SS, Lin Y, Jiang JH, Li CT, Chen RX, Cheng J, Jiang X, Zhang P, Song WM, Tang J, Zhang HQ, Sun L, Cui J, Zhang LJ, Tang B, Huang F, Qin Q, Pei XP, Zhou AM, Shao LM, Liu JL, Zhang FY, Du WD, Franke A, Bowcock AM, Elder JT, Liu JJ, Yang S, Zhang XJ. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet, 2010, 42( 11): 1005-1009. | [21] | Quan C, Ren YQ, Xiang LH, Sun LD, Xu AE, Gao XH, Chen HD, Pu XM, Wu RN, Liang CZ, Li JB, Gao TW, Zhang JZ, Wang XL, Wang J, Yang RY, Liang L, Yu JB, Zuo XB, Zhang SQ, Zhang SM, Chen G, Zheng XD, Li P, Zhu J, Li YW, Wei XD, Hong WS, Ye Y, Zhang Y, Wu WS, Cheng H, Dong PL, Hu DY, Li Y, Li M, Zhang X, Tang HY, Tang XF, Xu SX, He SM, Lv YM, Shen M, Jiang HQ, Wang Y, Li K, Kang XJ, Liu YQ, Sun L, Liu ZF, Xie SQ, Zhu CY, Xu Q, Gao JP, Hu WL, Ni C, Pan TM, Li Y, Yao S, He CF, Liu YS, Yu ZY, Yin XY, Zhang FY, Yang S, Zhou Y, Zhang XJ. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet, 2010, 42( 7): 614-618. | [22] | Yang YZ, Wang YP, Ma L, Du Y, Ge RL. Genome-wide association study of high-altitude pulmonary edema in Han Chinese. Hereditas (Beijing), 2013, 35(11): 1291-1299. | [22] | 杨应忠, 王亚平, 马兰, 杜洋, 格日力. 中国汉族高原肺水肿易感基因的全基因组关联研究. 遗传, 2013, 35(11): 1291-1299. | [23] | Xu RW, Yan WL. Advances in genome-wide association studies on essential hypertension. Hereditas (Beijing), 2012, 34(7): 793-809. | [23] | 许睿玮, 严卫丽. 原发性高血压全基因组关联研究进展. 遗传, 2012, 34(7): 793-809. | [24] | Zheng W, Ji LD, Xing WH, Tu WW, Xu J. Advances in genome-wide association study of tuberculosis. Hereditas (Beijing), 2013, 35(7): 823-829. | [24] | 郑伟, 季林丹, 邢文华, 涂巍巍, 徐进. 肺结核全基因组关联研究进展. 遗传, 2013, 35(7): 823-829. | [25] | Qiao HP, Zhang CY, Yu ZL, Li QM, Jiao Y, Cao JP. Genetic variants identified by GWAS was associated with colorectal cancer in the Han Chinese population. J Cancer Res Ther, 2015, 11( 2): 468-470. | [26] | Krueger JG, Fretzin S, Suárez-Fari?as M, Haslett PA, Phipps KM, Cameron GS, McColm J, Katcherian A, Cueto I, White T, Banerjee S, Hoffman RW. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol, 2012, 130(1): 145-154.e9. | [27] | Li L, Liao XP, Lin DX. The challenge and opportunity in the post genome-wide association study era. Chin J Prev Med, 2012, 46(3): 198-201. | [27] | 刘丽, 缪小平, 林东昕. 后全基因组关联研究时代的机遇与挑战. 中华预防医学杂志, 2012, 46(3): 198-201. | [28] | Sanjak JS, Long AD, Thornton KR. A model of compound heterozygous, loss-of-function alleles is broadly consistent with observations from complex-disease GWAS datasets. PLoS Genet, 2017, 13( 1): e1006573. | [29] | Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature, 2009, 461( 7265): 747-753. | [30] | Gibson G. Hints of hidden heritability in GWAS. Nat Genet, 2010, 42( 7): 558-560. | [31] | Hodge SE, Greenberg DA. How can we explain very low odds ratios in GWAS? I. polygenic models. Hum Hered, 2017, 81( 4): 173-180. | [32] | Quan C, Zhang XJ. Research strategies for the next step of genome-wide association study. Hereditas (Beijing), 2011, 33(2): 100-108. | [32] | 权晟, 张学军. 全基因组关联研究的深度分析策略. 遗传, 2011, 33(2): 100-108. | [33] | Wang K, Li MY, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet, 2010, 11( 12): 843-854. | [34] | Saccone SF, Saccone NL, Swan GE, Madden PAF, Goate AM, Rice JP, Bierut LJ. Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics, 2008, 24( 16): 1805-1811. | [35] | Li X. Bioinformatics. Beijing: People's Medical Publishing House, 2010: 219-220. | [35] | 李霞. 生物信息学. 北京: 人民卫生出版社, 2010: 219-220. | [36] | Luo XH, Liu ZF, Dong CZ. Advances on gene-based association analysis. Hereditas (Beijing), 2013, 35(9): 1065-1071. | [36] | 罗旭红, 刘志芳, 董长征. 基因水平的关联分析方法. 遗传, 2013, 35(9): 1065-1071. | [37] | Liu G, Peng HR, Ni ZF, Qin DD, Song FW, Song GS, Sun QX. Integrating genetic and gene expression data: methods and applications of eQTL mapping. Hereditas (Beijing), 2008, 30(9): 1228-1236. | [37] | 刘刚, 彭惠茹, 倪中福, 秦丹丹, 宋方威, 宋广树, 孙其信. 遗传与基因表达数据的整合——eQTL的方法及应用. 遗传, 2008, 30(9): 1228-1236. | [38] | Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Bilow M, Sul JH, Sankararaman S, Pasaniuc B, Eskin E. Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet, 2016, 99( 6): 1245-1260. | [39] | Tinker NA, Mather DE. MQTL: software for simplifyied composite interval mapping of QTL in multiple environments. J Agric Genom, 1995, 1: 1-5. | [40] | Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstr?le M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 2003, 34( 3): 267-273. | [41] | Kao PYP, Leung KH, Chan LWC, Yip SP, Yap MKH. Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions. Biochim Biophys Acta, 2017, 1861( 2): 335-353. | [42] | Kheirallah AK, Miller S, Hall IP, Sayers I. Translating lung function genome-wide association study (GWAS) findings: new insights for lung biology. Adv Genet, 2016, 93: 57-145. | [43] | Terada A, Yamada R, Tsuda K, Sese J. LAMPLINK: detection of statistically significant SNP combinations from GWAS data. Bioinformatics, 2016, 32( 22): 3513-3515. | [44] | Schierding W, Antony J, Cutfield WS, Horsfield JA, O'Sullivan JM. Intergenic GWAS SNPs are key components of the spatial and regulatory network for human growth. Hum Mol Genet, 2016, 25( 15): 3372-3382. | [45] | Wang K, Li MY, Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet, 2007, 81( 6): 1278-1283. | [46] | Debrabant B, Soerensen M. Gene set analysis for GWAS: assessing the use of modified Kolmogorov-Smirnov statistics. Stat Appl Genet Mol Biol, 2014, 13( 5): 553-566. | [47] | Lewinger JP, Conti DV, Baurley JW, Triche TJ, Thomas DC. Hierarchical Bayes prioritization of marker associations from a genome-wide association scan for further investigation. Genet Epidemiol, 2007, 31( 8): 871-882. | [48] | Kaposi-Novak P, Libbrecht L, Woo HG, Lee YH, Sears NC, Conner EA, Factor VM, Roskams T, Thorgeirsson SS. Central role of c-Myc during malignant conversion in human hepatocarcinogenesis. Cancer Res, 2009, 69( 7): 2775-2782. | [49] | Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst, 2004, 96( 6): 434-442. | [50] | Xu ZY, Pan W. Binomial mixture model based association testing to account for genetic heterogeneity for GWAS. Genet Epidemiol, 2016, 40( 3): 202-209. | [51] | Wu MC, Maity A, Lee S, Simmons EM, Harmon QE, Lin XY, Engel SM, Molldrem JJ, Armistead PM. Kernel machine SNP-set testing under multiple candidate kernels. Genet Epidemiol, 2013, 37( 3): 267-275. | [52] | Liu DW, Ghosh D, Lin XH. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC Bioinformatics, 2008, 9: 292. | [53] | Larson NB, Schaid DJ. A kernel regression approach to gene-gene interaction detection for case-control studies. Genet Epidemiol, 2013, 37( 7): 695-703. | [54] | Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin XH. Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet, 2010, 86( 6): 929-942. | [55] | Schaid DJ. Genomic similarity and kernel methods II: methods for genomic information. Hum Hered, 2010, 70( 2): 132-140. | [56] | Cheverud JM. A simple correction for multiple comparisons in interval mapping genome scans. Heredity, 2001, 87( 1): 52-58. | [57] | Freytag S, Manitz J, Schlather M, Kneib T, Amos CI, Risch A, Chang-Claude J, Heinrich J, Bickeb?ller H. A network-based kernel machine test for the identification of risk pathways in genome-wide association studies. Hum Hered, 2013, 76( 2): 64-75. | [58] | Chen M, Cho J, Zhao HY. Incorporating biological pathways via a Markov random field model in genome-wide association studies. PLoS Genet, 2011, 7( 4): e1001353. | [59] | Lee Y, Li HQ, Li JR, Rebman E, Achour I, Regan KE, Gamazon ER, Chen JL, Yang XH, Cox NJ, Lussier YA. Network models of genome-wide association studies uncover the topological centrality of protein interactions in complex diseases. J Am Med Inform Assoc, 2013, 20( 4): 619-629. | [60] | International Multiple Sclerosis Genetics Consortium. Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. Am J Hum Genet, 2013, 92( 6): 854-865. | [61] | Kulminski AM, Loika Y, Culminskaya I, Arbeev KG, Ukraintseva SV, Stallard E, Yashin AI. Explicating heterogeneity of complex traits has strong potential for improving GWAS efficiency. Sci Rep, 2016, 6: 35390. | [62] | Wu GD, Zhi DG. Pathway-based approaches for sequencing-based genome-wide association studies. Genet Epidemiol, 2013, 37( 5): 478-494. | [63] | Zhong H, Yang X, Kaplan LM, Molony C, Schadt EE. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am J Hum Genet, 2010, 86( 4): 581-591. | [64] | Marigorta UM, Gibson G. A simulation study of gene-by- environment interactions in GWAS implies ample hidden effects. Front Genet, 2014, 5: 225. | [65] | Bakshi A, Zhu ZH, Vinkhuyzen AAE, Hill WD, McRae AF, Visscher PM, Yang J. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci Rep, 2016, 6: 32894. | [66] | Bokanizad B, Tagett R, Ansari S, Helmi BH, Draghici S. SPATIAL: A system-level PAThway impact anaLysis approach. Nucleic Acids Res, 2016, 44( 11): 5034-5044. | [67] | Scheinfeldt LB, Schmidlen TJ, Gerry NP, Christman MF. Challenges in translating GWAS results to clinical care. Int J Mol Sci, 2016, 17( 8): 1267. |
|