[1] | Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. | [2] | Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013,31(3):233-239. | [3] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | [4] | Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826. | [5] | Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR . High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013,31(9):839-843. | [6] | Wong N, Liu W, Wang X . WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol, 2015,16:218. | [7] | Hinz JM, Laughery MF, Wyrick JJ . Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry, 2015,54(48):7063-7066. | [8] | Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M, Weissman JS . Compact and highly active next- generation libraries for CRISPR-mediated gene repression and activation. Elife, 2016,5:e19760. | [9] | Lee CM, Davis TH, Bao G . Examination of CRISPR/ Cas9 design tools and the effect of target site accessibility on Cas9 activity. Exp Physiol, 2017,103(4):456-460. | [10] | Isaac RS, Jiang FG, Doudna JA, Lim WA, Narlikar GJ, Almeida R . Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife, 2016,5:e13450. | [11] | Kosicki M, Tomberg K, Bradley A . Repair of double- strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol, 2018,36(8):765-771. | [12] | Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. | [13] | Listgarten J, Weinstein M, Kleinstiver BP, Sousa AA, Joung JK, Crawford J, Gao K, Hoang L, Elibol M, Doench JG, Fusi N . Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat Biomed Eng, 2018,2(1):38-47. | [14] | Kim HK, Min S, Song M, Jung S, Choi JW, Kim Y, Lee S, Yoon S, Kim HH . Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol, 2018,36(3):239-241. | [15] | Lin Y, Cradick TJ, Brown MT, Deshmu |
[1] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
[2] |
Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li.
Generation of genetically modified rat models via the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2023, 45(1): 78-87.
|
[3] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
[4] |
Chong Zhang, Zixuan Wei, Min Wang, Yaosheng Chen, Zuyong He.
Editing MC1R in human melanoma cells by CRISPR/Cas9 and functional analysis
[J]. Hereditas(Beijing), 2022, 44(7): 581-590.
|
[5] |
Yongqiang Kong, Jinkai Liu, Jiaqi Gu, Jingyi Xu, Yunuo Zheng, Yiliang Wei, Shaoyuan Wu.
Optimization scheme of machine learning model for genetic division between northern Han, southern Han, Korean and Japanese
[J]. Hereditas(Beijing), 2022, 44(11): 1028-1043.
|
[6] |
Yao Liu, Xianhui Zhou, Shuhong Huang, Xiaolong Wang.
Prime editing: a search and replace tool with versatile base changes
[J]. Hereditas(Beijing), 2022, 44(11): 993-1008.
|
[7] |
Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni.
The cutting edge of gene regulation approaches in model organism Drosophila
[J]. Hereditas(Beijing), 2022, 44(1): 3-14.
|
[8] |
Guangwu Yang, Yuan Tian.
The F-box gene Ppa promotes lipid storage in Drosophila
[J]. Hereditas(Beijing), 2021, 43(6): 615-622.
|
[9] |
Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He.
Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs
[J]. Hereditas(Beijing), 2021, 43(3): 261-270.
|
[10] |
Na Wang, Zhilian Jia, Qiang Wu.
RFX5 regulates gene expression of the Pcdhα cluster
[J]. Hereditas(Beijing), 2020, 42(8): 760-774.
|
[11] |
Guoling Li, Shanxin Yang, Zhenfang Wu, Xianwei Zhang.
Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals
[J]. Hereditas(Beijing), 2020, 42(7): 641-656.
|
[12] |
Yingnan Chen, Jing Lu.
Application of CRISPR/Cas9 mediated gene editing in trees
[J]. Hereditas(Beijing), 2020, 42(7): 657-668.
|
[13] |
Siyuan Liu, Guoqiang Yi, Zhonglin Tang, Bin Chen.
Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements
[J]. Hereditas(Beijing), 2020, 42(5): 435-443.
|
[14] |
Yali Hu, Rui Dai, Yongxin Liu, Jingying Zhang, Bin Hu, Chengcai Chu, Huaibo Yuan, Yang Bai.
Analysis of rice root bacterial microbiota of Nipponbare and IR24
[J]. Hereditas(Beijing), 2020, 42(5): 506-518.
|
[15] |
Liwen Bao, Yiye Zhou, Fanyi Zeng.
Advances in gene therapy for β-thalassemia and hemophilia based on the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2020, 42(10): 949-964.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|