[1] | Burke B, Stewart CL . Functional architecture of the cell's nucleus in development, aging, and disease. Curr Top Dev Biol, 2014,109:1-52. [DOI] | [2] | Gruenbaum Y, Foisner R . Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem, 2015,84:131-164. [DOI] | [3] | Gruenbaum Y, Medalia O . Lamins: The structure and protein complexes. Curr Opin Cell Biol, 2015,32:7-12. [DOI] | [4] | Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE . Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science, 2013,341(6149):1240104. [DOI] | [5] | Davidson PM, Denais C, Bakshi MC, Lammerding J . Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments. Cell Mol Bioeng, 2014,7(3):293-306. [DOI] | [6] | Kohsaka S, Saito T, Akaike K, Suehara Y, Hayashi T, Takagi T, Kaneko K, Ueno T, Kojima S, Kohashi KI, Mano H, Oda Y, Yao T . Pediatric soft tissue tumor of the upper arm with LMNA-NTRK1 fusion. Hum Pathol, 2018,72:167-173. [DOI] | [7] | Sakthivel KM, Sehgal P . A novel role of lamins from genetic disease to cancer biomarkers. Oncol Rev, 2016,10(2):309. [DOI] | [8] | Butin-Israeli V, Adam SA, Goldman AE, Goldman RD . Nuclear lamin functions and disease. Trends Genet, 2012,28(9):464-471. [DOI] | [9] | Worman HJ, Fong LG, Muchir A, Young SG . Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest, 2009,119(7):1825-1836. [DOI] | [10] | Gordon LB, Rothman FG, López-Otín C, Misteli T . Progeria: A paradigm for translational medicine. Cell, 2014,156(3):400-407. [DOI] | [11] | Gonzalo S, Kreienkamp R . DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Curr Opin Cell Biol, 2015,34:75-83. [DOI] | [12] | Vidak S, Foisner R . Molecular insights into the premature aging disease progeria. Histochem Cell Biol, 2016,145(4):401-417. [DOI] | [13] | Rodríguez S, Eríksson M . Low and high expressing alleles of the LMNA gene: Implications for laminopathy disease development. PLoS One, 2011,6(9):e25472. [DOI] | [14] | Vigouroux C, Guénantin AC, Vatier C, Capel E, Le Dour C, Afonso P, Bidault G, Béréziat V, Lascols O, Capeau J, Briand N, Jéru I . Lipodystrophic syndromes due to LMNA mutations: Recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus, 2018,9(1):251-264. [DOI] | [15] | Cenni V, D'Apice MR, Ga |
[1] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
[2] |
Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li.
Generation of genetically modified rat models via the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2023, 45(1): 78-87.
|
[3] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
[4] |
Chong Zhang, Zixuan Wei, Min Wang, Yaosheng Chen, Zuyong He.
Editing MC1R in human melanoma cells by CRISPR/Cas9 and functional analysis
[J]. Hereditas(Beijing), 2022, 44(7): 581-590.
|
[5] |
Yao Liu, Xianhui Zhou, Shuhong Huang, Xiaolong Wang.
Prime editing: a search and replace tool with versatile base changes
[J]. Hereditas(Beijing), 2022, 44(11): 993-1008.
|
[6] |
Cheng Xiao, Jieying Liu, Chunru Yang, Miao Yu.
Advances in lipodystrophy syndrome caused by LMNA gene mutation
[J]. Hereditas(Beijing), 2022, 44(10): 913-925.
|
[7] |
Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni.
The cutting edge of gene regulation approaches in model organism Drosophila
[J]. Hereditas(Beijing), 2022, 44(1): 3-14.
|
[8] |
Guangwu Yang, Yuan Tian.
The F-box gene Ppa promotes lipid storage in Drosophila
[J]. Hereditas(Beijing), 2021, 43(6): 615-622.
|
[9] |
Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He.
Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs
[J]. Hereditas(Beijing), 2021, 43(3): 261-270.
|
[10] |
Na Wang, Zhilian Jia, Qiang Wu.
RFX5 regulates gene expression of the Pcdhα cluster
[J]. Hereditas(Beijing), 2020, 42(8): 760-774.
|
[11] |
Guoling Li, Shanxin Yang, Zhenfang Wu, Xianwei Zhang.
Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals
[J]. Hereditas(Beijing), 2020, 42(7): 641-656.
|
[12] |
Yingnan Chen, Jing Lu.
Application of CRISPR/Cas9 mediated gene editing in trees
[J]. Hereditas(Beijing), 2020, 42(7): 657-668.
|
[13] |
Siyuan Liu, Guoqiang Yi, Zhonglin Tang, Bin Chen.
Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements
[J]. Hereditas(Beijing), 2020, 42(5): 435-443.
|
[14] |
Liwen Bao, Yiye Zhou, Fanyi Zeng.
Advances in gene therapy for β-thalassemia and hemophilia based on the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2020, 42(10): 949-964.
|
[15] |
Minting Lin, Lulu Lai, Miao Zhao, Biwei Lin, Xiangping Yao.
Construction of a striatum-specific Slc20a2 gene knockout mice model by CRISPR/Cas9 AAV system
[J]. Hereditas(Beijing), 2020, 42(10): 1017-1027.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|