[1] Lean MEJ, Han TS, Seidell JC. Impairment of health and quality of life in people with large waist circumference. Lancet , 1998, 351(9106): 853-856. [2] Cummings DE, Schwartz MW. Genetics and pathophysiology of human obesity. Annu Rev Med , 2003, 54: 453- 471. [3] Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol , 2008, 9(5): 367-377. [4] Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol , 2006, 7(12): 885-896. [5] Connolly E, Morrisey RD, Carnie JA. The effect of interscapular brown adipose tissue removal on body-weight and cold response in the mouse. Br J Nutr , 1982, 47(3): 653-658. [6] Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature , 1993, 366 (6457): 740-742. [7] Hamann A, Flier JS, Lowell BB. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology , 1996, 137(1): 21-29. [8] Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med , 2009, 360(15): 1509-1517. [9] Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. Brown adipose tissue activity controls triglyceride clearance. Nat Med , 2011, 17(2): 200-205. [10] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell , 2005, 120(1): 15-20. [11] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet , 2004, 5(7): 522-531. [12] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell , 2009, 136(2): 215-233. [13] Lee Y, Ahn C, Han JJ, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature , 2003, 425(6956): 415-419. [14] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin -4 encodes small RNAs with antisense complementarity to lin -14. Cell , 1993, 75(5): 843- 854. [15] Ambros V. MicroRNA pathways in flies and worms. Cell , 2003, 113(6): 673-676. [16] Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell , 2009, 139(6): 1096-1108. [17] Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature , 2009, 460(7259): 1154-1158. [18] Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature , 2008, 454(7207): 961-967. [19] Sun TW, Fu MG, Bookout AL, Kliewer SA, Mangelsdorf DJ. MicroRNA let -7 regulates 3T3-L1 adipogenesis. Mol Endocrinol , 2009, 23(6): 925-931. [20] Andersen DC, Jensen CH, Schneider M, Nossent AY, Eskildsen T, Hansen JL, Teisner B, Sheikh SP. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res , 2010, 316(10): 1681-1691. [21] Li HL, Li TP, Wang SH, Wei JF, Fan JF, Li J, Han Q, Liao LM, Shao CS, Zhao RC. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res , 2013, 10(3): 313-324. [22] Wang Q, Li YC, Wang JH, Kong J, Qi YC, Quigg RJ, Li XM. miR-17 |