遗传 ›› 2015, Vol. 37 ›› Issue (3): 240-249.doi: 10.16288/j.yczz.14-360
郭云涛,苗向阳
收稿日期:
2014-10-19
修回日期:
2014-12-16
出版日期:
2015-03-20
发布日期:
2015-02-10
通讯作者:
苗向阳,研究员,博士,博士生导师,研究方向:基因工程与功能基因组学及转基因动物。E-mail: mxy32@sohu.com
E-mail:yuntao008@126.com
作者简介:
郭云涛,硕士,专业方向:转基因与细胞工程。E-mail: yuntao008@126.com
基金资助:
Yuntao Guo, Xiangyang Miao
Received:
2014-10-19
Revised:
2014-12-16
Online:
2015-03-20
Published:
2015-02-10
摘要: MicroRNA(miRNA)是近年来在真核生物中发现的一类长约22nt的内源性非编码RNA,在动物中主要通过抑制靶mRNA翻译,在转录后水平调控基因表达。动物体内有两种类型的脂肪组织:褐色和白色脂肪,白色脂肪以甘油三脂形式贮存能量,而褐色脂肪利用甘油三酯产生能量。褐色脂肪因其对肥胖的拮抗作用而对研究肥胖等代谢疾病具有重要意义,大量研究表明miRNA在褐色脂肪细胞分化中扮演着重要角色,其自身也受到多种转录因子和环境因子调控,这个复杂的调控网络维持了体内脂肪组织稳态。文章主要综述了miRNA在褐色脂肪细胞分化中的最新研究进展,以期为利用miRNA进行肥胖、糖尿病等相关疾病及其并发症的治疗提供新思路。
郭云涛, 苗向阳. 调控褐色脂肪细胞分化的microRNAs[J]. 遗传, 2015, 37(3): 240-249.
Yuntao Guo, Xiangyang Miao. MicroRNAs in the regulation of brown adipocyte differentiation[J]. HEREDITAS(Beijing), 2015, 37(3): 240-249.
[1] Lean MEJ, Han TS, Seidell JC. Impairment of health and quality of life in people with large waist circumference. Lancet , 1998, 351(9106): 853-856. [2] Cummings DE, Schwartz MW. Genetics and pathophysiology of human obesity. Annu Rev Med , 2003, 54: 453- 471. [3] Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol , 2008, 9(5): 367-377. [4] Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol , 2006, 7(12): 885-896. [5] Connolly E, Morrisey RD, Carnie JA. The effect of interscapular brown adipose tissue removal on body-weight and cold response in the mouse. Br J Nutr , 1982, 47(3): 653-658. [6] Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature , 1993, 366 (6457): 740-742. [7] Hamann A, Flier JS, Lowell BB. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology , 1996, 137(1): 21-29. [8] Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med , 2009, 360(15): 1509-1517. [9] Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. Brown adipose tissue activity controls triglyceride clearance. Nat Med , 2011, 17(2): 200-205. [10] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell , 2005, 120(1): 15-20. [11] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet , 2004, 5(7): 522-531. [12] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell , 2009, 136(2): 215-233. [13] Lee Y, Ahn C, Han JJ, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature , 2003, 425(6956): 415-419. [14] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin -4 encodes small RNAs with antisense complementarity to lin -14. Cell , 1993, 75(5): 843- 854. [15] Ambros V. MicroRNA pathways in flies and worms. Cell , 2003, 113(6): 673-676. [16] Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell , 2009, 139(6): 1096-1108. [17] Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature , 2009, 460(7259): 1154-1158. [18] Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature , 2008, 454(7207): 961-967. [19] Sun TW, Fu MG, Bookout AL, Kliewer SA, Mangelsdorf DJ. MicroRNA let -7 regulates 3T3-L1 adipogenesis. Mol Endocrinol , 2009, 23(6): 925-931. [20] Andersen DC, Jensen CH, Schneider M, Nossent AY, Eskildsen T, Hansen JL, Teisner B, Sheikh SP. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res , 2010, 316(10): 1681-1691. [21] Li HL, Li TP, Wang SH, Wei JF, Fan JF, Li J, Han Q, Liao LM, Shao CS, Zhao RC. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res , 2013, 10(3): 313-324. [22] Wang Q, Li YC, Wang JH, Kong J, Qi YC, Quigg RJ, Li XM. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA , 2008, 105(8): 2889-2894. [23] Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells , 2009, 27(12): 3093-3102. [24] Huang S, Wang SH, Bian CJ, Yang Z, Zhou H, Zeng Y, Li HL, Han Q, Zhao RC. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem cells Dev , 2012, 21(13): 2531-2540. [25] Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, Chen YE, Liu D. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem , 2013, 288(48): 34394-34402. [26] Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, Lee YS, Kim JB. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun , 2010, 392(3): 323-328. [27] Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun , 2009, 390(2): 247-251. [28] Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R, Dani C, Barbry P. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol , 2011, 12(7): R64. [29] Taniguchi M, Nakajima I, Chikuni K, Kojima M, Awata T, Mikawa S. MicroRNA-33b downregulates the differentiation and development of porcine preadipocytes. Mol Biol Rep , 2014, 41(2): 1081-1090. [30] Li GX, Wu ZS, Li XJ, Ning XM, Li YJ, Yang GS. Biological role of microRNA-103 based on expression profile and target genes analysis in pigs. Mol Biol Rep , 2011, 38(7): 4777-4786. [31] Chen C, Peng YD, Peng YL, Peng J, Jiang SW. miR-135a-5p inhibits 3T3-L1 adipogenesis through activation of canonical Wnt/β-catenin signaling. J Mol Endocrinol , 2014, 52(3): 311-320. [32] Shin KK, Kim YS, Kim JY, Bae YC, Jung JS. miR-137 controls proliferation and differentiation of human adipose tissue stromal cells. Cell Physiol Biochem , 2014, 33(3): 758-768. [33] Yang Z, Bian CJ, Zhou H, Huang S, Wang SH, Liao LM, Zhao RC. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev , 2011, 20(2): 259-267. [34] Yi C, Xie WD, Li F, Lü Q, He J, Wu JB, Gu DY, Xu NH, Zhang YO. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett , 2011, 585(20): 3303-3309. [35] Esau C, Kang XL, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun YQ, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem , 2004, 279(50): 52361-52365. [36] Chen L, Hou J, Ye LF, Chen YW, Cui JH, Tian WD, Li C, Liu L. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling. Sci Rep , 2014, 4: 3819. [37] Ahn J, Lee H, Jung CH, Jeon TI, Ha TY. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med , 2013, 5(10): 1602-1612. [38] Oskowitz AZ, Lu J, Penfornis P, Ylostalo J, McBride J, Flemington EK, Prockop DJ, Pochampally R. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci USA , 2008, 105(47): 18372-18377. [39] Qin LM, Chen YS, Niu YN, Chen WQ, Wang QW, Xiao SQ, Li AN, Xie Y, Li J, Zhao X, He ZY, Mo DL. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/β-catenin signaling pathway. BMC Genomics , 2010, 11: 320. [40] Shi ZH, Zhao C, Guo XR, Ding HJ, Cui YG, Shen R, Liu JY. Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERα expression in estrogen-induced insulin resistance. Endocrinology , 2014, 155(5): 1982-1990. [41] Zhuang GQ, Meng C, Guo X, Cheruku PS, Shi L, Xu H, Li HG, Wang G, Evans AR, Safe S, Wu CD, Zhou BY. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation , 2012, 125(23): 2892-2903. [42] Peng YD, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang SW. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol , 2013, 45(8): 1585-1593. [43] Chen L, Cui JH, Hou J, Long J, Li C, Liu L. A novel negative regulator of adipogenesis: microRNA-363. Stem Cells , 2014, 32(2): 510-520. [44] Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, Zhu BY, Gao ZP, Zhang L, Liao DF. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol , 2011, 38(4): 239-246. [45] Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab , 2010, 299(2): E198-E206. [46] Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, Kuwabara Y, Takanabe-Mori R, Hasegawa K, Kita T, Kimura T. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol Endocrinol , 2010, 24(10): 1978-1987. [47] Kim YJ, Hwang SH, Lee SY, Shin KK, Cho HH, Bae YC, Jung JS. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells Dev , 2012, 21(10): 1749-1760. [48] Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castano I, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L. miR-519d overexpression is associated with human obesity. Obesity , 2010, 18(11): 2170-2176. [49] Han YY, Staab-Weijnitz CA, Xiong GM, Maser E. Identification of microRNAs as a potential novel regulatory mechanism in HSD11B1 expression. J Steroid Biochem Mol Biol , 2013, 133: 129-139. [50] Trajkovski M, Ahmed K, Esau CC, Stoffel M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol , 2012, 14(12): 1330-1335. [51] Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S, Seale P, Fernando P, van Ijcken W, Grosveld F, Dekemp RA, Boushel R, Harper ME, Rudnicki MA. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab , 2013, 17(2): 210-224. [52] Chen Y, Siegel F, Kipschull S, Haas B, Frohlich H, Meister G, Pfeifer A. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun , 2013, 4: 1769. [53] Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest , 2011, 121(1): 96-105. [54] Sun L, Xie HM, Mori MA, Alexander R, Yuan BB, Hattangadi SM, Liu QQ, Kahn CR, Lodish HF. Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol , 2011, 13(8): 958-965. [55] Feuermann Y, Kang K, Gavrilova O, Haetscher N, Jang SJ, Yoo KH, Jiang CT, Gonzalez FJ, Robinson GW, Hennighausen L. MiR-193b and miR-365-1 are not required for the development and function of brown fat in the mouse. RNA Biol , 2013, 10(12): 1807-1814. [56] Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol , 2012, 10(4): e1001314. [57] Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science , 2004, 304(5670): 594-596. [58] Trajkovski M, Lodish H. MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol Metab , 2013, 24(9): 442-450. [59] Wu Y, Zuo JR, Zhang YC, Xie Y, Hu F, Chen LH, Liu BL, Liu F. Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. Biochem Biophys Res Commun , 2013, 438(4): 575-580. [60] Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism , 2014, 63(2): 272-282. [61] Karbiener M, Pisani DF, Frontini A, Oberreiter LM, Lang E, Vegiopoulos A, Mossenbock K, Bernhardt GA, Mayr T, Hildner F, Grillari J, Ailhaud G, Herzig S, Cinti S, Amri EZ, Scheideler M. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells , 2014, 32(6): 1578-1590. [62] Kim HJ, Cho H, Alexander R, Patterson HC, Gu MX, Lo KA, Xu D, Goh VJ, Nguyen LN, Chai XR, Huang CX, Kovalik JP, Ghosh S, Trajkovski M, Silver DL, Lodish H, Sun L. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes , 2014, 63(12): 4045-4056. [63] Pan DN, Mao CX, Quattrochi B, Friedline RH, Zhu LJ, Jung DY, Kim JK, Lewis B, Wang YX. MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nat Commun , 2014, 5: 4725. [64] Walden TB, Timmons JA, Keller P, Nedergaard J, Cannon B. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J Cell Physiol , 2009, 218(2): 444-449. [65] Liu WY, Bi PP, Shan TZ, Yang X, Yin H, Wang YX, Liu N, Rudnicki MA, Kuang SH. miR-133a regulates adipo- 66 cyte browning in vivo . PloS Genet , 2013, 9(7): e1003626. [66] Ambros V. The functions of animal microRNAs. Nature , 2004, 431(7006): 350-355. [67] Ha MJ, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol , 2014, 15(8): 509-524. [68] Xie HM, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes , 2009, 58(5): 1050-1057. [69] Zhu LL, Shi CM, Ji CB, Xu GF, Chen L, Yang L, Fu ZY, Cui XW, Lu YB, Guo XR. FFAs and adipokine-mediated regulation of hsa-miR-143 expression in human adipocytes. Mol Biol Rep , 2013, 40(10): 5669-5675. [70] Polidori C, Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, Stumvoll M, Blüher M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One , 2009, 4(3): e4699. [71] Shi CM, Zhu LJ, Chen XH, Gu N, Chen L, Zhu L, Yang L, Pang LX, Guo XR, Ji CB, Zhang CM. IL-6 and TNF-α induced obesity-related inflammatory response through transcriptional regulation of miR-146b. J Interferon Cytokine Res , 2014, 34(5): 342-348. [72] Subedi A, Park PH. Autocrine and paracrine modulation of microRNA-155 expression by globular adiponectin in RAW 264. 7 macrophages: involvement of MAPK/NF-κB pathway. Cytokine , 2013, 64(3): 638-641. [73] Chou WW, Wang YT, Liao YC, Chuang SC, Wang SN, Juo SH. Decreased microRNA-221 is associated with high levels of TNF-α in human adipose tissue-derived mesenchymal stem cells from obese woman. Cell Physiol Biochem , 2013, 32(1): 127-137. [74] Meerson A, Traurig M, Ossowski V, Fleming JM, Mullins M, Baier LJ. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia , 2013, 56(9): 1971-1979. [75] Zhu L, Chen L, Shi CM, Xu GF, Xu LL, Zhu LL, Guo XR, Ni YH, Cui Y, Ji CB. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochem Biophys , 2014, 68(2): 283-290. [76] Xu LL, Shi CM, Xu GF, Chen L, Zhu LL, Zhu L, Guo XR, Xu MY, Ji CB. TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes. Cell Biochem Biophys , 2014, 70(2): 771-776. [77] Lin YY, Chou CF, Giovarelli M, Briata P, Gherzi R, Chen CY. KSRP and microRNA 145 are negative regulators of lipolysis in white adipose tissue. Mol Cell Biol , 2014, 34(12): 2339-2349. [78] Sun FY, Wang JY, Pan QH, Yu YC, Zhang Y, Wan Y, Wang J, Li XY, Hong A. Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun , 2009, 380(3): 660-665. [79] He AB, Zhu LL, Gupta N, Chang YS, Fang FD. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol , 2007, 21(11): 2785-2794. [80] Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Böttger T, Braun T, Seibler J, Brüning JC. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol , 2011, 13(4): 434-446. [81] Calura E, Martini P, Sales G, Beltrame L, Chiorino G, D'Incalci M, Marchini S, Romualdi C. Wiring miRNAs to pathways: a topological approach to integrate miRNA and mRNA expression profiles. Nucleic Acids Res , 2014, 42(11): e96. [82] Bray GA, Tartaglia LA. Medicinal strategies in the treatment of obesity. Nature , 2000, 404(6778): 672-677. |
[1] | 尹玲倩,冉金山,李菁菁,任鹏,张贤娴,刘益平. 禽类就巢性状的遗传调控[J]. 遗传, 2019, 41(5): 391-403. |
[2] | 李欢, 冯晋川, 李贵林, 王讯, 李明洲, 刘海峰. Lnc-RAP3对小鼠3T3-L1前脂肪细胞分化的影响[J]. 遗传, 2018, 40(9): 758-766. |
[3] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[4] | 杨熳,卢冰婕,段媛媛,陈晓峰,马建岗,郭燕. 骨质疏松症易感基因BDNF的遗传学关联分析及功能研究[J]. 遗传, 2017, 39(8): 726-736. |
[5] | 亢逸,关桂君,洪云汉. 用模式生物青鳉概观硬骨鱼性别决定及性分化研究进展[J]. 遗传, 2017, 39(6): 441-454. |
[6] | 贾振伟. 线粒体与多潜能干细胞功能[J]. 遗传, 2016, 38(7): 603-611. |
[7] | 周学, 杜宜兰, 金萍, 马飞. 癌症相关microRNA与靶基因的生物信息学分析[J]. 遗传, 2015, 37(9): 855-864. |
[8] | 张进威, 罗毅, 王宇豪, 何刘军, 李明洲, 王讯. MicroRNA调控动物脂肪细胞分化研究进展[J]. 遗传, 2015, 37(12): 1175-1184. |
[9] | 张璐, 张燕军, 苏蕊, 王瑞军, 李金泉. MicroRNA对皮肤毛囊发育的调控机制[J]. 遗传, 2014, 36(7): 655-660. |
[10] | 高飞, 孙鹏, 陈静, 李章磊, 张孜宸, 李华云, 王宁, 周宜君. 蒙古沙冬青保守microRNAs的鉴定及靶基因预测[J]. 遗传, 2014, 36(5): 485-494. |
[11] | 郎大田, 张亚平, 于黎. 核糖核酸酶基因超家族分子进化[J]. 遗传, 2014, 36(4): 316-326. |
[12] | 林德玲, 罗瑛, 宋宜. 基因转录后调控在DNA损伤反应中的重要功能[J]. 遗传, 2014, 36(4): 309-318. |
[13] | 张蕾, 隋御, 王婷, 李利坚, 李元杰, 金彩霞, 徐方. hMMS2基因对结肠癌细胞耐药逆转的影响[J]. 遗传, 2014, 36(4): 346-353. |
[14] | 常杨, 穆伟涛, 满朝来. 动物microRNA-181的功能与应用前景[J]. 遗传, 2014, 36(2): 103-110. |
[15] | 海萨·艾也力汗,郭焱,孟玮,杨天燕,马燕武. 新疆裂腹鱼类的系统发生关系及物种分化时间[J]. 遗传, 2014, 36(10): 1013-1020. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: