[1] | Jiang RS, Xu GY, Wang XL, Yang N . Broody traits of Dongxiang blue-shell chickens under floor system. China Poultry, 2005,27(24):17-18. | [1] | 姜润深, 徐桂云, 王晓亮, 杨宁 . 平养条件下东乡绿壳蛋鸡就巢性研究. 中国家禽, 2005,27(24):17-18. | [2] | Jiang RS, Xu GY, Zhang XQ, Yang N . Association of polymorphisms for prolactin and prolactin receptor genes with broody traits in chickens. Poult Sci, 2005,84(6):839-845. | [3] | Cui JX, Du HL, Zhang XQ . Polymorphisms and bioinformatics analysis of chicken prolactin gene. Hereditas (Beijing), 2005,27(2):208-214. | [3] | 崔建勋, 杜红丽, 张细权 . 鸡催乳素基因序列多态及生物信息学分析. 遗传, 2005,27(2):208-214. | [4] | Peng JY . Gene expression profiles of nerve growth factor in follicles and oviduct of green eggshell chickens and its regulation during granulosa cell development[D]. Sichuan Agricultural University, 2016. | [4] | 彭继云 . 神经生长因子NGF在绿壳蛋鸡卵泡和输卵管中的表达及对卵泡发育的调控[学位论文]. 四川农业大学, 2016. | [5] | Cheng Y, Zhao XY, Li YY, Zhao QZ, Zhu JP, Ai SJ, Li HY . Study on the changes of reproductive hormone and regulation of follicle development during the reproductive cycle of Yili goose in Xinjiang. Chin Anim Husb Vet Med, 2017,44(11):3264-3269. | [5] | 程元, 赵晓钰, 李园园, 赵全庄, 朱建平, 艾山江, 李海英 . 新疆伊犁鹅繁殖周期生殖激素变化及卵巢卵泡发育规律的研究. 中国畜牧兽医, 2017,44(11):3264-3269. | [6] | Zhang M . Study on the endocrine mechanism and nutritional regulation of broodiness in pigeon[D]. Zhejiang University, 2011. | [6] | 张敏 . 蛋鸽就巢内分泌机制及其营养调控研究[学位论文]. 浙江大学, 2011. | [7] | Liu L, Xiao Q, Gilbert ER, Cui Z, Zhao X, Wang Y, Yin H, Li D, Zhang H, Zhu Q . Whole-transcriptome analysis of atrophic ovaries in broody chickens reveals regulatory pathways associated with proliferation and apoptosis. Sci Rep, 2018,8(1):7231. | [8] | Lin FZ . Broody rules & change regularity of reproductive hormone and polymorphism of microsatellite on PRL gene in Muscovy ducks[D]. Fujian Agriculture and Forestry University, 2005. | [8] | 林福忠 . 番鸭就巢、生殖激素变化规律及PRL基因微卫星多态性[学位论文]. 福建农林大学, 2005. | [9] | Proudman JA . Circulating prolactin levels at the end of the photophase and the end of the scotophase throughout the reproductive cycle of the turkey hen. Poult Sci, 1998,77(2):303-308. | [10] | Wang GY, Wang SK . Controlling of reproductive hormones on poultry broodiness. J Fujian Agric Fore Univ (Nat Sci Ed), 2005,34(1):82-86. | [10] | 王光瑛, 王寿昆 . 生殖激素对家禽就巢的调控. 福建农林大学学报: 自然科学版, 2005,34(1):82-86. | [11] | Wang YH, Huang FC . Study on the changes of pituitary hormones and prolactin secretion levels in different reproductive cycles of Dingan Goose. Heilongjiang Anim Sci Veter Med, 2015, ( 13):122-124. | [11] | 王运辉, 黄发才 . 定安鹅不同繁殖周期脑下垂体激素与催乳素分泌水平变化规律的研究. 黑龙江畜牧兽医, 2015, ( 13):122-124. | [12] | Yu SG, Liao J, Tang M, Wang G . Change of serum biochemistry hormones in Emei black chicken indicator and reproductive at brooding and laying period. China Poultry, 2017,39(22):10-14. | [12] | 喻世刚, 廖娟, 唐梅, 王刚 . 产蛋期和就巢期峨眉黑鸡血清部分生化指标及生殖激素水平的变化. 中国家禽, 2017,39(22):10-14. | [13] | Zhao WJ, Gu LY, Zou XT, Zhang M, Liu JG . Effect of olanzapine on laying performance of Americal king pigeons and approach to the mechanisms. J Zhejiang Univ(Agric Life Sci), 2011,37(1):77-82. | [13] | 赵文静, 顾林英, 邹晓庭, 张敏, 刘进国 . 奥氮平对美国王鸽生产性能的影响及机制研究. 浙江大学学报(农业与生命科学版), 2011,37(1):77-82. | [14] | Fang DA, Geng ZY, Zhang XR, Tao Y . The mechanism of hypothalamic dopamine and serotonin regulate the nesting in Wanxi white goose. Chin Anim Husb Vet Med, 2005,32(7):35-37. | [14] | 方弟安, 耿照玉, 章孝荣, 陶勇 . 下丘脑多巴胺和5-羟色胺调控皖西白鹅就巢机理的研究. 中国畜牧兽医, 2005,32(7):35-37. | [15] | Zhu P . Study on the expression of prolactin receptor gene (PRLR) mRNA in goose reproductive cycle[D]. Anhui Agricultural University, 2009. | [15] | 朱盼 . 鹅生殖周期催乳素受体基因(PRLR) mRNA表达规律的研究[学位论文]. 安徽农业大学, 2009. | [16] | Duan XJ, Dong B, Yang YG, Sun GB, Wang J, Zhang L, Li XF . Cloning of PRLR gene and its mRNA expression regulation of tissue correlated with reproduction in goose. Southwest Chin J Agric Sci, 2015,28(6):2779-2783. | [16] | 段修军, 董飚, 杨廷桂, 孙国波, 王健, 张玲, 李小芬 . 鹅PRLR基因克隆及在生殖相关组织中的表达规律. 西南农业学报, 2015,28(6):2779-2783. | [17] | Liang Y . The relationship of prolactin gene polymorphism and nesting in chicken[D]. South China Agricultural University, 2005. | [17] | 梁勇 . 鸡催乳素基因多态性及其与就巢行为的关系[学位论文]. 华南农业大学, 2005. | [18] | Wu GP . Analysis of PRL, FSH and LH genes expression in the reproductive cycle of Zhedong white goose[D]. Chinese Academy of Agricultural Sciences, 2014. | [18] | 吴国平 . 浙东白鹅繁殖周期中PRL、FSH和LH基因的表达分析[学位论文]. 中国农业科学院, 2014. | [19] | Zhang XY, Tang XW, Wang LG, Duan XJ, Chen ZY . Expression of FSHβ and its receptors in different reproductive stages of lionhead goose. Chin J Anim Sci, 2013,49(1):14-17. | [19] | 张响英, 唐现文, 王利刚, 段修军, 陈章言 . 狮头鹅不同繁殖阶段FSHβ及其受体的表达. 中国畜牧杂志, 2013,49(1):14-17. | [20] | Wu X, Wan XP, Lan JJ, Yan MJ, Lian SY, Rijal M, Huang ZB, Li A . Cloning, expression, and polymorphism at the 5’-flanking region of the GnRH gene and their association with laying traits in Muscovy duck (Cairina moschata). Br Poult Sci, 2015,56(5):531-542. | [21] | Xu HP, Shen X, Zhou M, Fang M, Zeng H, Nie Q, Zhang X . The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet, 2010,11:17. | [22] | Xu HP, Shen X, Zhou M, Luo CL, Kang L, Liang Y, Zeng H, Nie QH, Zhang DX, Zhang XQ . The dopamine D2 receptor gene polymorphisms associated with chicken broodiness. Poult Sci, 2010,89(3):428-438. | [23] | Kingsbury MA, Jan N, Klatt JD, Goodson JL . Nesting behavior is associated with VIP expression and VIP-Fos colocalization in a network-wide manner. Horm Behav, 2015,69:68-81. | [24] | Zhou M, Lei M, Rao Y, Nie Q, Zeng H, Xia M, Liang F, Zhang D, Zhang X . Polymorphisms of vasoactive intestinal peptide receptor-1 gene and their genetic effects on broodiness in chickens. Poutl Sci, 2008,87(5):893-903. | [25] | Shi ZD, Liang SD, Bi YZ . Study on the regulation mechanism of hypothalamic dopamine and serotonin on chicken nesting. Acta Vet Et Zootech Sin, 2000,31(6):487-492. | [25] | 施振旦, 梁少东, 毕英佐 . 下丘脑多巴胺和5-羟色胺调控鸡就巢机理的研究. 畜牧兽医学报, 2000,31(6):487-492. | [26] | Chaiseha Y, Youngren OM, el Halawani ME . Dopamine receptors influence vasoactive intestinal peptide release from turkey hypothalamic explants. Neuroendocrinology, 1997,65(6):423-429. | [27] | Shen X, Zeng H, Xie L, He J, Li J, Xie X, Luo C, Xu H, Zhou M, Nie Q, Zhang X . The GTPase activating Rap/RanGAP domain-like 1 gene is associated with chicken reproductive traits. PLoS One, 2012,7(4):e33851. | [28] | Xu Q, Zhao W, Chen Y, Tong Y, Rong G, Huang Z, Zhang Y, Chang G, Wu X, Chen G . Transcriptome profiling of the goose (Anser cygnoides) ovaries identify laying and broodiness phenotypes. PLoS One, 2013,8(2):e55496. | [29] | Liu H, Wang J, Li L, Han C, He H, Xu H . Transcriptome analysis revealed the possible regulatory pathways initiating female geese broodiness within the hypothalamic-pituitary- gonadal axis. PLoS One, 2018,13(2):e0191213. | [30] | Geng AL, Zhang XZ, Liu H, Zhang Y, Song ZG . Comparison of reproductive system development and some related gene expression in broody hens and laying hens. China Poultry, 2014,36(17):11-14. | [30] | 耿爱莲, 张秀竹, 刘辉, 张尧, 宋志刚 . 就巢鸡与产蛋鸡生殖系统发育及相关基因表达量的比较. 中国家禽, 2014,36(17):11-14. | [31] | GUO J, TANG QP, ZHANG SJ, Ma YH, Lu HL, Su JD, Zou JM, Chen KW, Li HM . Identification of broodiness- related geese genes by suppression subtractive hybridization. Acta Vet Et Zootech Sin, 2011,42(10):1477-1484. | [31] | 郭军, 汤青萍, 章双杰, 马月辉, 陆火林, 苏建东, 邹剑敏, 陈宽维, 李慧芳 . 利用抑制消减杂交技术筛选鹅就巢行为相关基因. 畜牧兽医学报, 2011,42(10):1477-1484. | [32] | Lou Y, Yu W, Han L, Yang S, Wang Y, Ren T, Yu J, Zhao A . ROS activates autophagy in follicular granulosa cells via mTOR pathway to regulate broodiness in goose. Anim Reprod Sci, 2017,185:97-103. | [33] | Gholami M, Erbe M, Christian G?rke, Preisinger R, Weigend A, Weig end S, Simianer H . Population genomic analyses based on 1 million SNPs in commercial egg layers. PLoS One, 2014,9(4):e94509. | [34] | Jiang RS, Yang N . Progress on pituitary-specific transcription factor ( POU1F1) in poultry. Hereditas (Beijing), 2004,26(6):957-961. | [34] | 姜润深, 杨宁 . 家禽垂体特异转录因子POU1F1研究进展. 遗传, 2004,26(6):957-961. | [35] | Xu Q, Zhang Y, Chen Y, Tong YY, Rong GH, Huang ZY, Zhao RX, Zhao WM, Wu XS, Chang GB, Chen GH . Identification and differential expression of microRNAs in ovaries of laying and broody geese(Anser cygnoides) by Solexa sequencing. PLoS One, 2014,9(2):e87920. | [36] | Chen F, Li J, Zhang H, Xu J, Tao Z, Shen J, Shen J, Lu L, Li C . Identification of differentially expressed known and novel miRNAs in broodiness of goose. Mol Bio Rep, 2014,41(5):2767-2777. | [37] | Yu J, He K, Ren T, Lou Y, Zhao A . High-throughput sequencing reveals differential expression of miRNAs in prehierarchal follicles of laying and brooding geese. Physiol Genomics, 2016,48(7):455-463. | [38] | Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L, Wang L . Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab, 2013,98(7):3068-3079. | [39] | Wu S, Sun H, Zhang Q, Jiang Y, Fang T, Isabelle C, Yan GJ, Hu YL . MicroRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1. Reprod Biol Endocrin, 2015,13:94. | [40] | Zhang CL, Wang H, Yan CY, Gao XF, Ling XJ . Deregulation of RUNX2 by miR-320a deficiency impairs steroidogenesis in cumulus granulosa cells from polycystic ovary syndrome (PCOS) patients. Biochem Bioph Res Co, 2017,482(4):1469-1476. | [41] | Xu S, Linher-Melville K, Yang BB, Wu D, Li J . Micro-RNA378 regulates ovarian estradiol production by targeting aromatase. Endocrinology, 2011,152(10):3941-3951. | [42] | Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F . MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol, 2010,24(3):540-551. | [43] | Zhang J, Liu W, Jin Y, Jia P, Jia K, Yi M . MiR-202-5p is a novel germ plasm-specific microRNA in zebrafish. Sci Rep, 2017,7(1):7055. | [44] | Gay S, Bugeon J, Bouchareb A, Henry L, Delahaye C, Legeai F, Montfort J, Le Cam A, Siegel A, Bobe J, Thermes V . MicroRNA-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet, 2018,14(9):e1007593 | [45] | Bannister SC, Smith CA, Roeszler KN, Doran TJ, Sinclair AH, Tizard ML . Manipulation of estrogen synthesis alters mir202* expression in embryonic chicken gonads. Biol Reprod, 2011,85(1):22-30. | [46] | Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, Shi H, Xu Y, Qu R, Chai R, Shao R, Jin L, He L, Sun X, Wang L . MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep, 2015,5:8689. | [47] | Yin M, Wang X, Yao G, Lü M, Liang M, Sun Y, Sun F . Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem, 2014,289(26):18239-18257. | [48] | Schauer SN, Sontakke SD, Watson ED, Esteves CL, Donadeu FX . Involvement of miRNAs in equine follicle development. Reproduction, 2013,146(3):273-282. | [49] | Kang L, Yang C, Wu H, Chen Q, Huang L, Li X, Tang H, Jiang Y . MiR-26a-5p regulates TNRC6A expression and facilitates theca cell proliferation in chicken ovarian follicles. Dna Cell Biol, 2017,36(11):922-929. | [50] | Yang W, Li Q, Su B, Yu M . MicroRNA-148b promotes proliferation of hair follicle cells by targeting NFAT5. Front Agric Sci Eng, 2016,3(1):72-80. | [51] | Du KT, Deng JQ, He XG, Liu ZP, Chen P, Zhang MS . MiR-214 regulates the human hair follicle stem cell proliferation and differentiation by targeting EZH2 and Wnt/β-catenin signaling way in vitro. Tissue Eng Regen Med, 2018,15(3):341-350. | [52] | Zhang L, Gao J, Cui S . MiR-21 is involved in norepinephrine-mediated rat granulosa cell apoptosis by targeting SMAD7. J Mol Endocrinol, 2017,58(4):199-210. | [53] | Kuwano Y, Nishida K, Kajita K, Satake Y, Akaike Y, Fujita K, Kano S, Masuda K, Rokutan K . Transformer 2β and miR-204 regulate apoptosis through competitive binding to 3° UTR of BCL2 mRNA. Cell Death Differ, 2014,22(5):815-825. | [54] | Zhang P, Wang J, Lang H, Wang WX, Liu XH, Liu HY, Tan CC, Li XT, Zhao YM, Wu XH . MicroRNA-205 affects mouse granulosa cell apoptosis and estradiol synthesis by targeting CREB1. J Cell Biochem, 2018, doi: 10.1002/jcb.28133. | [55] | Tian L, Zhang J, Ge J, Xiao H, Lu J, Fu S, Liu M, Sun Y . MicroRNA-205 suppresses proliferation and promotes apoptosis in laryngeal squamous cell carcinoma. Med Oncol, 2014,31(1):785. | [56] | Zhang H, Zhang X, Yuan X, Wang L, Xiao Y . MicroRNA-205 inhibits renal cells apoptosis via targeting CMTM4. Iran J Basic Med Sci, 2015,18(10):1020-1026. | [57] | Fang F . Effects on activity of goat ovarian granule cells by miR-10b and BDNF in dairy goats[D]. Northwest A & F University, 2014. | [57] | 方芳 . miR-10b和BDNF对山羊卵巢颗粒细胞活性的影响[学位论文]. 西北农林科技大学, 2014. | [58] | Tu J, Yang Y, Hoi-Hung AC, Chen ZJ, Chan WY . Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Sci Rep, 2017,7:41304. | [59] | Cui H, Zhao G, Wen J, Tong W . Follicle-stimulating hormone promotes the transformation of cholesterol to estrogen in mouse adipose tissue. Biochem Bioph Res Co, 2018,495(3):2331-2337. | [60] | Yu FQ, Han CS, Yang W, Jin X, Hu ZY, Liu YX . Activation of the p38 MAPK pathway by follicle-stimulating hormone regulates steroidogenesis in granulosa cells differentially. J Endocrinol, 2005,186(1):85-96. | [61] | Liang N, Xu Y, Yin Y, Yao G, Tian H, Wang G, Lian J, Wang Y, Sun F . Steroidogenic factor-1 is required for TGF-beta3-mediated 17beta-estradiol synthesis in mouse ovarian granulosa cells. Endocrinology, 2011,152(8):3213-3225. | [62] | Lai WA, Yeh YT, Fang WL, Wu LS, Harada N, Wang PH, Ke FC, Lee WL, Hwang JJ . Calcineurin and CRTC2 mediate FSH and TGFβ1 upregulation of Cyp19a1 and Nr5a in ovary granulosa cells. J Mol Endocrinol, 2014,53(2):259-270. | [63] | Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y . Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol, 2007,21(3):712-725. | [64] | Mao Y, Yan Q, Zhang CX, Zhen X, Cao RB, Yan GJ . DNAJB11 promotes the synthesis of FOXL2 induced estradiol in ovarian granulosa cells. J Med Postgrad, 2017,30(10):1013-1021. | [64] | 毛岩, 闫蔷, 张春雪, 甄鑫, 曹瑞兵, 颜桂军 . DNAJB11促进卵巢颗粒细胞中FOXL2诱导的雌激素合成. 医学研究生学报, 2017,30(10):1013-1021. | [65] | Li MH, Yang HH, Li MR, Sun YL, Jiang XL, Xie QP, Wang TR, Shi HJ, Sun LN, Zhou LY, Wang DS . Antagonistic roles of dmrt1 and foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology, 2013,154(12):4814-4825. | [66] | Folger JK, Jimenez-Krassel F, Ireland JJ, Lv L, Smith GW . Regulation of granulosa cell cocaine and amphetamine regulated transcript(CART) binding and effect of CART signaling inhibitor on granulosa cell estradiol production during dominant follicle selection in cattle. Biol Reprod, 2013,89(6):137. | [67] | Gao X, Zhang Y, Li X . Expression of connective tissue growth factor in polycystic ovary syndrome and its effects on proliferation and apoptosis of ovarian granulosa cells. J Clin Exp Med, 2017,16(17):1686-1689. | [67] | 高雪, 张悦, 李霞 . CTGF在多囊卵巢综合征中的表达及对卵巢颗粒细胞增殖凋亡的影响研究. 临床和实验医学杂志, 2017,16(17):1686-1689. | [68] | Hunzicker-Dunn ME, Lopez-Biladeau B, Law NC, Fiedler SE, Carr DW, Maizels ET . PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci USA, 2012,109(44):E2979-E2988. | [69] | Law NC, White MF, Hunzicker-dunn ME . G protein-coupled receptors(GPCRs) that signal via protein kinase A(PKA) cross-talk at insulin receptor substrate 1(IRS1) to activate the phosphatidylinositol 3-kinase(PI3K)/AKT pathway. J Biol Chem, 2016,291(53):27160-27169. | [70] | Du X, Pan Z, Li Q, Liu H, Li Q . SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis. Cell Death Dis, 2018,9(2):151. | [71] | Gao Y, Wen H, Wang C, Li Q . SMAD7 antagonizes key TGFβ superfamily signaling in mouse granulosa cells in vitro. Reproduction, 2013,146(1):1-11. | [72] | Yao W, Pan Z, Du X, Zhang J, Li Q . MiR-181b induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-β signaling by interacting with the TGFBR1 promoter. J Cell Physiol, 2018,233(9):6807-6821. | [73] | Liu J, Yao W, Yao Y, Du X, Zhou J, Ma B, Liu H, Li Q, Pan Z . MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. Febs Lett, 2014,588(23):4497-4503. | [74] | Irles P, Elshaer N, Piulachs MD . The Notch pathway regulates both the proliferation and differentiation of follicular cells in the panoistic ovary of Blattella germanica. Open Biol, 2016,6(1):150197. | [75] | Trombly DJ, Woodruff TK, Mayo KE . Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology, 2009,150(2):1014-1024. | [76] | Jing J, Jiang X, Chen J, Yao X, Zhao M, Li P, Pan Y, Ren Y, Liu W, Lyu L . Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells. Anim Reprod Sci, 2017,181:69-78. | [77] | Prasasya RD, Mayo KE . Notch signaling regulates differentiation and steroidogenesis in female mouse ovarian granulosa cells. Endocrinology, 2018,159(1):184-198. | [78] | Yu J, Lou YP, Zhao AY . Transcriptome analysis of follicles reveals the importance of autophagy and hormones in regulating broodiness of Zhedong white goose. Sci Rep, 2016,6:36877. |
|