[1] Xue Y, Liu ZX, Cao J, Ren J. Computational prediction of post-translational modification sites in proteins. Systems and Computational Biology-Molecular and Cellular Experimental Systems , 2011, 5772(6): 18559. [2] Ubersax JA, Ferrell JE Jr. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol , 2007, 8(7): 530-541. [3] Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew Chem Int Ed , 2005, 44(37): 5932- 5943. [4] Smith KT, Workman JL. Introducing the acetylome. Nat Biotechnol , 2009, 27(10): 917-919. [5] Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol , 2004, 5(11): 897-907. [6] Croall DE, Ersfeld K. The calpains: modular designs and functional diversity. Genome Biol , 2007, 8(6): 218. [7] Wang YB, Liu ZX, Cheng H, Gao TS, Pan ZC, Yang Q, Guo AY, Xue Y. EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases. Nucleic Acids Res , 2014, 42(Database issue): D496-D502. [8] Gao TS, Liu ZX, Wang YB, Cheng H, Yang Q, Guo AY, Ren J, Xue Y. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res , 2013, 41(Database issue): D445-D451. [9] Liu ZX, Cao J, Gao XJ, Zhou YH, Wen LP, Yang XJ, Yao X, Ren J, Xue Y. CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res , 2011, 39(Database issue): D1029-D1034. [10] Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed , 2005, 44(45): 7342- 7372. [11] Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology , 2002, 12(4): 43R-56R. [12] Schopfer FJ, Baker PRS, Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci , 2003, 28(12): 646-654. [13] Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol , 2007, 8(12): 947-956. [14] El-Husseini AED, Bredt DS. Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci , 2002, 3(10): 791-802. [15] Paik WK, Paik DC, Kim S. Historical review: the field of protein methylation. Trends Biochem Sci , 2007, 32(3): 146-152. [16] Kehoe JW, Bertozzi CR. Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Chem Biol , 2000, 7(3): R57-61. [17] Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S -nitrosylation: purview and parameters. Nat Rev Mol Cell Biol , 2005, 6(2): 150-166. [18] Ren J, Gao XJ, Liu XZ, Cao J, Ma Q, Xue Y. Computational analysis of phosphoproteomics: progresses and perspectives. Curr Protein Pept Sci , 2011, 12(7): 591-601. [19] Xue Y, Gao X, Cao J, Liu Z, Jin C, Wen L, Yao X, Ren J. A summary of computational resources for protein phosphorylation. Curr Protein Pept Sci , 2010, 11(6): 485-496. [20] Liu ZX, Wang YB, Xue Y. Phosphoproteomics-based network medicine. FEBS J , 2013, 280(22): 5696-5704. [21] Blom N, Kreegipuu A, Brunak S. PhosphoBase: a database of phosphorylation sites. Nucleic Acids Res , 1998, 26(1): 382-386. [22] Kreegipuu A, Blom N, Brunak S, Jarv J. Statistical analysis of protein kinase specificity determinants. FEBS Lett , 1998, 430(1-2): 45-50. [23] Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol , 1999, 294(5): 1351-1362. [24] Zhou FF, Xue Y, Lu HL, Chen GL, Yao XB. A genome-wide analysis of sumoylation-related biological processes and functions in human nucleus. FEBS Lett , 2005, 579(16): 3369-3375. [25] Zhou FF, Xue Y, Yao XB, Xu Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics , 2006, 22(7): 894-896. [26] Kim JH, Lee J, Oh B, Kimm K, Koh I. Prediction of phosphorylation sites using SVMs. Bioinformatics , 2004, 20(17): 3179-3184. [27] Li A, Wang LR, Shi YZ, Wang MH, Jiang ZH, Feng HQ. Phosphorylation site prediction with a modified k-nearest neighbor algorithm and BLOSUM62 matrix. Conf Proc IEEE Eng Med Biol Soc , 2005, 6: 6075-6078. [28] Wu Z, Lu M, Li TT. Prediction of substrate sites for protein phosphatases 1B, SHP-1, and SHP-2 based on sequence features. Amino Acids , 2014, 46(8): 1919-1928. [29] Tang YR, Chen YZ, Canchaya CA, Zhang ZD. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Protein Eng Des Sel , 2007, 20(8): 405-412. [30] Li SJ, Liu BS, Cai YD, Li YX. Predicting protein N-glycosylation by combining functional domain and secretion information. J Biomol Struct Dyn , 2007, 25(1): 49-54. [31] Liu BS, Li SJ, Wang YL, Lu L, Li YX, Cai YD. Predicting the protein SUMO modification sites based on Properties Sequential Forward Selection (PSFS). Biochem Biophys Res Commun , 2007, 358(1): 136-139. [32] Niu S, Huang T, Feng KY, Cai YD, Li YX. Prediction of tyrosine sulfation with mRMR feature selection and analysis. J Proteome Res , 2010, 9(12): 6490-6497. [33] Cai YD, Lu L. Predicting N-terminal acetylation based on feature selection method. Biochem Biophys Res Commun , 2008, 372(4): 862-865. [34] Li BQ, Cai YD, Feng KY, Zhao GJ. Prediction of protein cleavage site with feature selection by random forest. PLoS One , 2012, 7(9): e45854. [35] Li TT, Du PF, Xu NF. Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources. PLoS One , 2010, 5(11): e15411. [36] Chen YZ, Tang YR, Sheng ZY, Zhang ZD. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k -spaced amino acid pairs. BMC Bioinform , 2008, 9: 101. [37] Zou L, Wang M, Shen Y, Liao J, Li A, Wang MH. PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites. BMC Bioinform , 2013, 14: 247. [38] Hou T, Zheng GY, Zhang PY, Jia J, Li J, Xie L, Wei CC, Li YX. LAceP: lysine acetylation site prediction using logistic regression classifiers. PLoS One , 2014, 9(2): e89575. [39] Yaffe MB, Leparc GG, Lai JL, Obata T, Volinia S, Cantley LC. A motif-based profile scanning approach for genome- wide prediction of signaling pathways. Nat Biotechnol , 2001, 19(4): 348-353. [40] Hu LL, Niu S, Huang T, Wang K, Shi XH, Cai YD. Prediction and analysis of protein hydroxyproline and hydroxylysine. PLoS One , 2010, 5(12): e15917. [41] Cui WR, Niu S, Zheng LL, Hu LL, Huang T, Gu L, Feng KY, Zhang N, Cai YD, Li YX. Prediction of protein amidation sites by feature selection and analysis. Mol Genet Genomics , 2013, 288(9): 391-400. [42] Zhou FF, Xue Y, Chen GL, Yao XB. GPS: a novel group-based phosphorylation predicting and scoring method. Biochem Biophys Res Commun , 2004, 325(4): 1443-1448. [43] Xue Y, Ren J, Gao XJ, Jin CJ, Wen LP, Yao XB. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics , 2008, 7(9): 1598-1608. [44] Xue Y, Liu ZX, Cao J, Ma Q, Gao XJ, Wang QQ, Jin CJ, Zhou YH, Wen LP, Ren J. GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel , 2011, 24(3): 255-260. [45] Xue Y, Liu ZX, Gao XJ, Jin CJ, Wen LP, Yao XB, Ren J. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS One , 2010, 5(6): e11290. [46] Zhao Q, Xie YB, Zheng YY, Jiang S, Liu WZ, Mu WP, Liu ZX, Zhao Y, Xue Y, Ren J. GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res , 2014, 42(Web Server issue): W325-W330. [47] Xue Y, Li A, Wang LR, Feng HQ, Yao XB. PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinform , 2006, 7: 163. [48] Li A, Xue Y, Jin CJ, Wang MH, Yao XB. Prediction of N ε -acetylation on internal lysines implemented in Bayesian Discriminant Method. Biochem Biophys Res Commun , 2006, 350(4): 818-824. [49] Xue Y, Chen H, Jin CJ, Sun ZR, Yao XB. NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm. BMC Bioinform , 2006, 7: 458. [50] Li TT, Li F, Zhang XG. Prediction of kinase-specific phosphorylation sites with sequence features by a log-odds ratio approach. Proteins , 2008, 70(2): 404-414. [51] Li TT, Du YP, Wang LK, Huang L, Li WL, Lu M, Zhang XG, Zhu WG. Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites. Mol Cell Proteomics , 2012, 11(1): M111 011080. [52] Li TT, Song BY, Wu Z, Lu M, Zhu WG. Systematic identification of Class I HDAC substrates. Brief Bioinf , 2014, 15(6): 963-972. [53] Suo SB, Qiu JD, Shi SP, Chen X, Liang RP. PSEA: Kinase-specific prediction and analysis of human phosphorylation substrates. Sci Rep , 2014, 4: 4524. [54] Chen X, Shi SP, Suo SB, Xu HD, Qiu JD. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity. Bioinformatics , 2015, 31(2): 194-200. [55] Song CX, Ye ML, Liu ZX, Cheng H, Jiang XN, Han GH, Zhou SY, Tan YX, Wang HY, Ren J, Xue Y, Zou HF. Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics , 2012, 11(10): 1070-1083. [56] Fan WW, Xu XY, Shen Y, Feng HQ, Li A, Wang MH. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest. Amino Acids , 2014, 46(4): 1069-1078. [57] Liu ZX, Ren J, Cao J, He J, Yao XB, Jin CJ, Xue Y. Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes. Brief Bioinform , 2013, 14(3): 344-360. [58] Zhou FF, Xue Y, Yao XB, Xu Y. A general user interface for prediction servers of proteins' post-translational modification sites. Nat Protoc , 2006, 1(3): 1318-1321. [59] Huang YH, Xu BS, Zhou XY, Li Y, Lu M, Jiang R, Li TT. Systematic characterization and prediction of post-translational modification cross-talk. Mol Cell Proteomics , 2015, 14(3): 761-770. [60] Liu ZX, Ma Q, Cao J, Gao XJ, Ren J, Xue Y. GPS- PUP: computational prediction of pupylation sites in prokaryotic proteins. Mol Biosyst , 2011, 7(10): 2737-2740. [61] Liu ZX, Cao J, Ma Q, Gao XJ, Ren J, Xue Y. GPS- YNO2: computational prediction of tyrosine nitration sites in proteins. Mol Biosyst , 2011, 7(4): 1197-1204. [62] Jiang Y, Li BQ, Zhang YC, Feng YM, Gao YF, Zhang N, Cai YD. prediction and analysis of post-translational pyruvoyl residue modification sites from internal serines in proteins. PLoS One , 2013, 8(6): e66678. [63] Sun CL, Shi ZZ, Zhou XB, Chen LN, Zhao XM. Prediction of S-glutathionylation sites based on protein sequences. PLoS One , 2013, 8(2): e55512. [64] Shi SP, Sun XY, Qiu JD, Suo SB, Chen X, Huang SY, Liang RP. The prediction of palmitoylation site locations using a multiple feature extraction method. J Mol Graph Model , 2013, 40: 125-130. [65] Liu ZX, Cao J, Gao XJ, Ma Q, Ren J, Xue Y. GPS-CCD: a novel computational program for the prediction of calpain cleavage sites. PLoS One , 2011, 6(4): e19001. [66] Wang M, Xia H, Sun DD, Chen ZX, Wang MH, Li A. Literature mining of protein phosphorylation using dependency parse trees. Methods , 2014, 67(3): 386-393. [67] Suo SB, Qiu JD, Shi SP, Chen X, Huang SY, Liang RP. Proteome-wide analysis of amino acid variations that influence protein lysine acetylation. J Proteome Res , 2013, 12(2): 949-958. [68] Xue Y, Zhou FF, Zhu MJ, Ahmed K, Chen GL, Yao XB. GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res , 2005, 33(Web Server issue): W184-W187. [69] Xue Y, Zhou FF, Fu CH, Xu Y, Yao XB. SUMOsp: a web server for sumoylation site prediction. Nucleic Acids Res , 2006, 34(Web Server issue): W254-W257. [70] Ren J, Wen LP, Gao XJ, Jin CJ, Xue Y, Yao XB. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel , 2008, 21(11): 639-644. [71] Wang XB, Wu LY, Wang YC, Deng NY. Prediction of palmitoylation sites using the composition of k -spaced amino acid pairs. Protein Eng Des Sel , 2009, 22(11): 707-712. [72] Li YX, Shao YH, Deng NY. Improved prediction of palmitoylation sites using PWMs and SVM. Protein Pept Lett , 2011, 18(2): 186-193. [73] Chen Z, Chen YZ, Wang XF, Wang C, Yan RX, Zhang ZD. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS One , 2011, 6(7): e22930. [74] Chen X, Qiu JD, Shi SP, Suo SB, Huang SY, Liang RP. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites. Bioinformatics , 2013, 29(13): 1614-1622. [75] Chen Z, Zhou Y, Song JN, Zhang ZD. hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Biochim Biophys Acta , 2013, 1834(8): 1461-1467. [76] Chen X, Qiu JD, Shi SP, Suo SB, Liang RP. Systematic analysis and prediction of pupylation sites in prokaryotic proteins. PLoS One , 2013, 8(9): e74002. [77] Li SL, Li H, Li MF, Shyr Y, Xie L, Li YX. Improved prediction of lysine acetylation by support vector machines. Protein Pept Lett , 2009, 16(8): 977-983. [78] Li Y, Wang MJ, Wang HL, Tan H, Zhang ZD, Webb GI, Song JN. Accurate in silico identification of species- specific acetylation sites by integrating protein sequence- derived and functional features. Sci Rep , 2014, 4: 5765. [79] Wang LK, Du YP, Lu M, Li TT. ASEB: a web server for KAT-specific acetylation site prediction. Nucleic Acids Res , 2012, 40(Web Server issue): W376-W379. [80] Shi SP, Qiu JD, Sun XY, Suo SB, Huang SY, Liang RP. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Mol Biosyst , 2012, 8(5): 1520-1527. [81] Chen H, Xue Y, Huang N, Yao XB, Sun ZR. MeMo: a web tool for prediction of protein methylation modifications. Nucleic Acids Res , 2006, 34(Web Server issue): W249- W253. [82] Shi SP, Qiu JD, Sun XY, Suo SB, Huang SY, Liang RP. PMeS: prediction of methylation sites based on enhanced feature encoding scheme. PLoS One , 2012, 7(6): e38772. [83] Li SJ, Liu BS, Zeng R, Cai YD, Li YX. Predicting O-glycosylation sites in mammalian proteins by using SVMs. Comput Biol Chem , 2006, 30(3): 203-208. [84] Fan YX, Zhang Y, Shen HB. LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields. Proteins , 2013, 81(4): 622-634. [85] Wang MJ, Zhao XM, Tan H, Akutsu T, Whisstock JC, Song JN. Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets. Bioinformatics , 2014, 30(1): 71-80. [86] Huang SY, Shi SP, Qiu JD, Sun XY, Suo SB, Liang RP. PredSulSite: prediction of protein tyrosine sulfation sites with multiple features and analysis. Anal Biochem , 2012, 428(1): 16-23. [87] Pan ZC, Liu ZX, Cheng H, Wang YB, Gao TS, Ullah S, Ren J, Xue Y. Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues. Sci Rep , 2014, 4: 7331. [88] Li H, Xing XB, Ding GH, Li QR, Wang C, Xie L, Zeng R, Li YX. SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics , 2009, 8(8): 1839-1849. [89] Li J, Jia J, Li H, Yu J, Sun H, He Y, Lv DQ, Yang XJ, Glocker MO, Ma LX, Yang JB, Li L, Li W, Zhang GQ, Liu Q, Li YX, Xie L. SysPTM 2.0: an updated systematic resource for post-translational modification. Database (Oxford) , 2014, 2014: bau025. [90] Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res , 2015, 43(Database issue): D512-D520. [91] Ren J, Jiang CH, Gao XJ, Liu ZX, Yuan ZN, Jin CJ, Wen LP, Zhang ZL, Xue Y, Yao XB. PhosSNP for systematic analysis of genetic polymorphisms that influence protein phosphorylation. Mol Cell Proteomics , 2010, 9(4): 623-634. [92] Du YP, Xu NF, Lu M, Li TT. hUbiquitome: a database of experimentally verified ubiquitination cascades in humans. Database (Oxford) , 2011, 2011: bar055. [93] Liu ZX, Wang YB, Gao TS, Pan ZC, Cheng H, Yang Q, Cheng ZY, Guo AY, Ren J, Xue Y. CPLM: a database of protein lysine modifications. Nucleic Acids Res , 2014, 42(Database issue): D531-D536. [94] Chen T, Zhou T, He B, Yu HY, Guo XJ, Song XF, Sha JH. mUbiSiDa: a comprehensive database for protein ubiquitination sites in mammals. PLoS One , 2014, 9(1): e85744. [95] Zhou Y, Liu SX, Song JN, Zhang ZD. Structural propensities of human ubiquitination sites: accessibility, centrality and local conformation. PLoS One , 2013, 8(12): e83167. [96] Chen Z, Zhou Y, Zhang ZD, Song JN. Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features. Brief Bioinform , 2014: bbu031. [97] Qi L, Liu ZX, Wang J, Cui YQ, Guo YS, Zhou T, Zhou ZM, Guo XJ, Xue Y, Sha JH. Systematic analysis of the phosphoproteome and kinase-substrate networks in the mouse testis. Mol Cell Proteomics , 2014, 13(12): 3626-3638. [98] Wang Z, Ding GH, Geistlinger L, Li H, Liu L, Zeng R, Tateno Y, Li YX. Evolution of protein phosphorylation for distinct functional modules in vertebrate genomes. Mol Biol Evol , 2011, 28(3): 1131-1140. [99] Zhang B, Wang J, Wang XJ, Zhu J, Liu Q, Shi ZA, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, Davies SR, Wang S, Wang P, Kinsinger CR, Rivers RC, Rodriguez H, Townsend RR, Ellis MJC, Carr SA, Tabb DL, Coffey RJ, Slebos RJC, Liebler DC. Proteogenomic characterization of human colon and rectal cancer. Nature , 2014, 513(7518): 382-387. [100] Zanivan S, Meves A, Behrendt K, Schoof EM, Neilson LJ, Cox J, Tang HR, Kalna G, van Ree JH, van Deursen JM, Trempus CS, Machesky LM, Linding R, Wickström SA, Fässler R, Mann M. In Vivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis. Cell Rep , 2013, 3(2): 552-566. [101] Landry CR, Levy ED, Michnick SW. Weak functional constraints on phosphoproteomes. Trends Genet , 2009, 25(5): 193-197. (责任编委: 赵方庆) |