遗传 ›› 2014, Vol. 36 ›› Issue (3): 220-227.doi: 10.3724/SP.J.1005.2014.0220
张朝晖1,2, 康现江1, 穆淑梅1
收稿日期:
2013-07-15
修回日期:
2013-11-01
出版日期:
2014-03-20
发布日期:
2014-02-25
通讯作者:
康现江, 教授, 博士生导师, 研究方向:生殖生物学。E-mail: xjkang@hbu.edu.cn
E-mail:xjkang@hbu.edu.cn
作者简介:
张朝晖, 副主任医师, 在读博士研究生, 研究方向:生殖生物学。Tel: 0312-2093283; E-mail: zhizhi199999@163.com
基金资助:
国家自然科学基金项目(编号:312723095)资助
Zhaohui Zhang1,2, Xianjiang Kang1, Shumei Mu1
Received:
2013-07-15
Revised:
2013-11-01
Online:
2014-03-20
Published:
2014-02-25
摘要:
组蛋白磷酸化是组蛋白氨基酸残基的磷酸化修饰, 是一类重要的翻译后修饰, 与有丝分裂和减数分裂的染色质压缩、染色质功能调节、转录的激活与抑制、DNA损伤修复以及物质代谢等多种机制相关。文章对国内外近10年多种代表性生物精子发生(孢子形成)的相关文献进行总结, 论述了组蛋白磷酸化在精子发生中调控蛋白质作用因子的结合位点、调控减数分裂过程中的DNA复制与重组、保障正确的染色质重塑、对减数分裂后的成熟精子核的完全包装等重要功能。这些发现加深了人们对于组蛋白及其翻译后修饰在精子发生及分化中作用的理解。
张朝晖, 康现江, 穆淑梅. 组蛋白磷酸化修饰与精子发生[J]. 遗传, 2014, 36(3): 220-227.
Zhaohui Zhang, Xianjiang Kang, Shumei Mu. Histone phosphorylation and spermatogenesis[J]. HEREDITAS, 2014, 36(3): 220-227.
[1] Lewis JD, Abbot DW, Ausió J. A haploid affair: Core his-tone transitions during spermatogenesis. Biochem Cell Biol, 2003, 81(3): 131–140. <\p> [2] Zlatanova J, Leuba S H, Van Holde K. Chromatin fiber structure: morphology, molecular determinants structural transitions. Biophys J, 1998, 74(5): 2554–2556. <\p> [3] Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet, 2008, 9(2): 129–140. <\p> [4] Shilatifard A. Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Annu Rev Biochem, 2006, 75(1): 243–269. <\p> [5] Khalil AM, Wahlestedt C. Epigenetic mechanisms of gene regulation during mammalian spermatogenesis. Epigenet-ics, 2008, 3(1): 21–28. <\p> [6] Ahn SH, Henderson KA, Keeney S, Allis CD. H2B (Ser10) phosphorylation is induced during apoptosis and meiosis in S.cerevisiae. Cell Cycle, 2005, 4(6): 780–783. <\p> [7] Bellve AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse: Isolation and morphological characteriza-tion. J Cell Biol, 1977, 74(1): 68–85. <\p> [8] Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol, 2003, 14(1): 107. <\p> [9] 刘婉敏, 刘容菊. 磷酸化组蛋白H2AX介导的DNA损伤精子受精卵内修复. 中华男科学杂志, 2010, 16(4): 349–353. <\p> [10] Rajender S, Avery K, Agarwal A. Epigenetics, spermato-genesis and male infertility. Mutat Res, 2011, 727(3): 62– 71. <\p> [11] Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta, 2013, doi: 10.1016/j.bbagrm.2013.08.004. <\p> [12] 葛少钦, 康现江, 刘桂荣, 穆淑梅. 精子发生过程中的相关基因. 遗传, 2008, 30(1): 3–12. <\p> [13] 葛少钦, 李建忠, 张晓静. 精子发生过程中组蛋白甲基化和乙酰化. 遗传, 2011, 33(9): 939–946. <\p> [14] Zamudio NM, Chong S, O'Bryan MK. Epigenetic regula-tion in male germ cells. Reproduction, 2008, 136(2): 131– 146. <\p> [15] Fuentes-Mascorro G, Serrano H, Rosado A. Sperm chro-matin. Arch Androl, 2000, 45(3): 215–225. <\p> [16] Lim C, Tarayrah L, Chen X. Transcriptional regulation during Drosophila spermatogenesis. Spermatogenesis, 2012, 2(3): 158–166. <\p> [17] Kota SK, Feil R. Epigenetic transitions in germ cell de-velopment and meiosis. Dev Cell, 2010, 19(5): 675–686. <\p> [18] Krishnamoorthy T, Chen X, Govin J, Cheung WL, Dorsey J, Schindler K, Winter E, Allis CD, Guacci V, Khochbin S, Fuller MT, Berger SL. Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes Dev, 2006, 20(18): 2580– 2592. <\p> [19] Sassone-Corsi P. Unique chromatin remodeling and tran-scriptional regulation in spermatogenesis. Science, 2002, 296(5576): 2176–2178. <\p> [20] 马丹丹, 康现江, 董丽君, 穆淑梅, 王琦, 刘桂荣. 中华绒螯蟹精巢发育组织学. 水产科学, 2006, 25(6): 291–296. <\p> [21] 王琦, 康现江, 程立均, 穆淑梅, 曹刚. 河蟹精子膜蛋白的生化特性. 中国水产科学, 2010, 17(1): 156–160. <\p> [22] 康现江, 李少菁, 王桂忠, 项有茂. 锯缘青蟹精子碱性蛋白分布与受精. 动物学报, 2001, 47(专刊): 82–86. <\p> [23] Ge S Q, Wang S X, Kang X J, Duan F, Wang Y, Li W Y, Guo M S, Mu S M, Zhang Y H. Transition of basic protein during spermatogenesis of Fenneropenaeus chinensis (Osbeck, 1765). Cytotechnology, 2011, 63(6): 581–598. <\p> [24] Roth SY, Allis CD. Chromatin condensation: does histone H1 dephosphorylation play a role. Trends Biochem Sci, 1992, 17(3): 93–98. <\p> [25] Ohsumi K, Katagiti K, Kishimoto T. Chromosome con-densation in Xenopus mitotic extracts without histone H1. Science, 1993, 262(5642): 2033–2035. <\p> [26] Dasso M, Dimitrov S, Wblfre AP. Nuclear assembly is in-dependent of linker histones. Proc Natl Acad Sci USA, 1994, 91(26): 12477–12481. <\p> [27] Talasz H, Sarg B, Linder HH. Site-specifically phos-phorylated forms of H1.5 and H1.2 localized at dis-tinct regions of the nucleus are related to different proc-esses during the cell cycle. Chromosoma, 2009, 118(6): 693–709. <\p> [28] Rose KL, Li A, Zalenskaya I, Zhang Y, Unni E, Hodgson KC, Yu Y, Shabanowitz J, Meistrich ML, Hunt DF, Ausió J. C-Terminal phosphorylation of murine testis-specific his-tone H1 in elongating spermatids. J Proteome Res, 2008, 7(9): 4070–4078. <\p> [29] Godde JS, Ura K. Cracking the enigmatic linker histone Code. J Biochem, 2008, 143(3): 287–293. <\p> [30] Lu X, Hansen JC. Identification of specific functional subdomains within the linker histone H10 C-terminal do-main. J Biol Chem, 2004, 279(10): 8701–8707. <\p> [31] Hendzel MJ, Lever MA, Crawford E, Th’ng JP. The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J Biol Chem, 2004, 279(19): 20028–20034. <\p> [32] Sarg B, Chwatal S, Talasz H, Lindner HH. Testis-specific linker histone H1t is multiply phosphorylated during spermatogenesis. J Biol Chem, 2009, 284(6): 3610–3618. <\p> [33] Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol, 2003, 15(2): 172–183. <\p> [34] Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phos-phorylation on serine 139. J Biol Chem, 1998, 273(10): 5858–5868. info:pmid/9488723 <\p> [35] Zhang Y, Griffin K, Mondal N, Parvin JD. Phosphoryla-tion of histone H2A inhibits transcription on chromatin templates. J Biol Chem, 2004, 279(21): 21866–21872. info:pmid/15010469 <\p> [36] Villani P, Fresegna AM, Ranaldi R, Eleuteri P, Paris L, Pacchierotti F, Cordelli E. X-ray induced DNA damage and repair in germ cells of PARP1(-/-) male mice. Int J Mol Sci, 2013, 14(9): 18078–18092. <\p> [37] Cordelli E, Paris L. γ-H2AX detection in somatic and germ cells of mice. Methods Mol Biol, 2013, 1044: 293– 310. <\p> [38] Wojtczak A, Pop-ońska K, Kwiatkowska M. Phosphorylation of H2AX histone as indirect evidence for double-stranded DNA breaks related to the exchange of nuclear proteins and chromatin remodeling in Chara vul-garis spermiogenesis. Protoplasma, 2008, 233(3–4): 263–267. <\p> [39] Meyer-Ficca ML, Scherthan H, Bürkle A, Meyer RG. Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma, 2005, 114(1): 67–74. <\p> [40] Cabrero J, Palomino-Morales J, Camacho PM. The DNA- repair Ku70 protein is located in the nucleus and tail of elongating spermatids in grasshoppers. Chromosome Res, 2007, 15(8): 1093–1100. <\p> [41] Laberge RM, Boissonneault G. On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod, 2005, 73(2): 289–296. <\p> [42] Cordelli E, Eleuteri P, Grollino MG, Benassi B, Blandino G, Bartoleschi C, Pardini MC, Di Caprio EV, Spanò M, Pacchierotti F, Villani P. Direct and delayed X-ray-induced DNA damage in male mouse germ cells. Environ Mol Mutagen, 2012, 53(6): 429–439. <\p> [43] Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W. Histone H2A variants H2AX and H2AZ. Curr Opin Genet, 2002, 12(2): 162–169. <\p> [44] Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature, 2005, 434(7033): 583–589. <\p> [45] Churikov D, Siino J, Svetlova M, Zhang K, Gineitis A, Morton Bradbury E, Zalensky A. Novel human tes-tis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics, 2004, 84(4): 745–756. <\p> [46] Gineitis A, Zalenskaya I, Yau P, Bradbury EM, Zalensky AO. Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol, 2000, 151(7): 1591–1598. <\p> [47] Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P, Bradbury EM. Human testis/sperm- specific histone H2B (hTSH2B): Molecular cloning and characterization. J Biol Chem, 2002, 277(45): 43474– 43480. <\p> [48] Lu S, Xie YM, Li X, Luo J, Shi XQ, Hong X, Pan YH, Ma X. Mass spectrometry analysis of dynamic post-translational modifications of TH2B during spermatogenesis. Mol Hum Reprod, 2009, 15(6): 373–378. <\p> [49] Fisher-Adams G, Grunstein M. Yeast histone H4 and H3 N-termini have different effects on the chromatin structure of the GALl promoter. EMBO J, 1995, 14(7): 1468–1477. <\p> [50] Nowak SJ, Corces VG. Phosphorylation of histone H3: A balancing act between chromosome condensation and transcriptional activation. Trends Genet, 2004, 20(4): 214– 220. <\p> [51] Hirota T, Lipp JJ, Toh BH, Peters JM. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature, 2005, 438(7071): 1176– 1180. <\p> [52] Barber CM, Turner FB, Wang Y, Hagstrom K, Taverna SD, Mollah S, Ueberheide B, Meyer BJ, Hunt DF, Cheung P. The enhancement of histone H4 and H2A serine 1 phos-phorylation during mitosis and S-phase is evolutionarily conserved. Chromosoma, 2004, 112(7): 360–371. <\p> [53] Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell, 2010, 142(6): 967–980. <\p> [54] Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem, 2004, 271(17): 3459–3469. <\p> [55] Lau PN, Cheung P. Unlocking polycomb silencing through histone H3 phosphorylation. Cell Cycle, 2011, 10(10): 1514–1515. <\p> [56] Govin J, Dorsey J, Gaucher J, Rousseaux S, Khochbin S, Berger SL. Systematic screen reveals new functional dy-namics of histones H3 and H4 during gametogenesis. Gene & Development, 2010, 24: 1772–1786. <\p> [57] Anna S, Christian S. Histone H3 phosphorylation: A ver-satile chromatin modification for different occasions. Biochimie, 2012, 94(11): 2193–2201. <\p> [58] Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T. Immunohistochemical analysis of Histone H3 modifica-tions in germ cells during mouse spermatogenesis. Acta Histochem Cytochem, 2011, 44(4): 183–190. <\p> [59] Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boateng MA, Dean K, Golshani A, Zhang Y, Greenblatt JF, Johnston M, Shilatifard A. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell, 2003, 11(1): 267–274. <\p> [60] Dover J, Schneider J, Tawiah-Boating M, Wood A, Dean K, Johnston M, Shilatifard A. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem, 2002, 277(32): 28368–28371. <\p> [61] Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates tran-scription elongation. Cell, 2009, 138(6): 1122–1136. <\p> [62] Drobic B, Pérez-Cadahía B, Yu J, Kung SK. Davie JR. Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res, 2010, 38(10): 3196–3208. <\p> [63] Suto RK, Clarkson MJ, Tremethick DJ. Crystal structure of a nucleosome core particle containing the variant his-tone H2A. Z Nat Struct Biol, 2000, 7(12): 1121–1124. <\p> [64] Zheng C, Hayes JJ. Intra- and inter-nucleosomal pro-tein–DNA interactions of the core histone tail domains in a model system. J Biol Chem, 2003, 278(26): 24217–24224. <\p> [65] Elgin SC, Grewal SI. Heterochromatin: Silence is golden. Curr Biol, 2003, 13(23): 895–898. <\p> [66] Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R. Transition from a nucleosome-based to a protamine-based chromatin con-figuration during spermiogenesis in Drosophila. J Cell Sci, 2007, 120(Pt 9): 1689–1700. <\p> [67] Cheung WL, Turner FB, Krishnamoorthy T, Wolner B, Ahn SH, Foley M, Dorsey JA, Peterson CL, Berger SL, Allis CD. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol, 2005, 15(7): 656–660. <\p> [68] Govin J, Schug J, Krishnamoorthy T, Dorsey J, Khochbin S, Berger SL. Genome-wide mapping of histone H4 ser-ine-1 phosphorylation during sporulation in Saccharomy-ces cerevisiae. Nucleic Acids Research, 2010, 38(14): 4599–4606. <\p> [69] Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006, 125(2): 315–326. <\p> [70] Wendt KD, Shilatifard A. Packing for the germy: the role of histone H4 Ser1 phosphorylation in chromatin compac-tion and germ cell development. Genes & Dev, 2006, 20(18): 2487–2491. <\p> [71] Schiza V, Molina-Serrano D, Kyriakou D, Hadjiantoniou A, Kirmizis A. N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA si-lencing. PLoS Genet, 2013, 9: e1003805. <\p> [72] McManus KJ, Hendzel MJ. The relationship between his-tone H3 phosphorylation and acetylation throughout the mammalian cell cycle. Biochem Cell Biol, 2006, 84(4): 640–657. <\p> [73] Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD. Mito-sis-specific phosphorylation of histone H3 initiates pri-marily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 1997, 106(6): 348–360. <\p> [74] Kroczak TJ, Baran J, Pryjma J, Siedlar M, Reshedi I, Hernandez E, Alberti E, Maddika S, Los M. The emerging importance of DNA mapping and other comprehensive screening techniques, as tools to identify new drug targets and as a means of (cancer) therapy personalisation. Expert Opin Ther Targets, 2006, 10(2): 289–302.<\p> |
[1] | 刘传明,丁利军,李佳音,戴建武,孙海翔. 衰老导致卵巢功能低下研究进展[J]. 遗传, 2019, 41(9): 816-826. |
[2] | 赵鑫,杨化强. 大动物精原干细胞研究进展[J]. 遗传, 2019, 41(8): 686-702. |
[3] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[4] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[5] | 朱亚男, 敖英, 李斌, 万阳, 汪晖. 足细胞发育异常及相关肾脏疾病研究进展[J]. 遗传, 2018, 40(2): 116-125. |
[6] | 黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
[7] | 王天工, 叶孟. m 6A甲基化与肿瘤研究进展[J]. 遗传, 2018, 40(12): 1055-1065. |
[8] | 柯玉文,刘江. 动物早期胚胎发育中染色质结构的继承和重编程[J]. 遗传, 2018, 40(11): 977-987. |
[9] | 袁志恒,赵艳梅. piRNA/PIWI功能调控与精子发生[J]. 遗传, 2017, 39(8): 683-691. |
[10] | 刘福林, 周瑾, 张蔚, 汪晖. 胎盘发育过程中的表观遗传学改变及其相关疾病[J]. 遗传, 2017, 39(4): 263-275. |
[11] | 陈青云,李有志,樊宪伟. 植物气孔发育的分子调控机制[J]. 遗传, 2017, 39(4): 302-312. |
[12] | 王建, 张凯翔, 芦国珍, 赵湘辉. 5-羟甲基胞嘧啶及其TET氧合酶在神经系统发育和相关疾病中的研究进展[J]. 遗传, 2017, 39(12): 1138-1149. |
[13] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[14] | 崔婷婷, 邢天宇, 褚衍凯, 李辉, 王宁. PPARγ在脂肪生成中的遗传和表观遗传调控[J]. 遗传, 2017, 39(11): 1066-1077. |
[15] | 董莲花, 冉茂良, 李智, 彭馥芝, 陈斌. 泛素-蛋白酶体途径在精子生成中的作用[J]. 遗传, 2016, 38(9): 791-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: