遗传 ›› 2014, Vol. 36 ›› Issue (8): 766-778.doi: 10.3724/SP.J.1005.2014.0766

• 综述 • 上一篇    下一篇

蛋白质可逆磷酸化对花粉管生长的调控作用

索金伟, 戴绍军   

  1. 东北林业大学盐碱地生物资源环境研究中心,东北油田盐碱植被恢复与重建教育部重点实验室,哈尔滨 150040
  • 收稿日期:2014-01-22 出版日期:2014-08-20 发布日期:2013-07-19
  • 通讯作者: 戴绍军,教授,博士生导师,研究方向:植物蛋白质组学。E-mail:daishaojun@hotmail.com
  • 作者简介:索金伟,博士研究生,研究方向:植物蛋白质组学。E-mail: suojinwei@foxmail.com
  • 基金资助:
    国家自然科学基金项目(编号:31270310)和高等学校博士学科点专项科研基金(博导类)(编号:20120062110011)资助

Regulation of pollen tube growth by reversible protein phosphorylation

Jinwei Suo, Shaojun Dai   

  1. Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field of Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
  • Received:2014-01-22 Online:2014-08-20 Published:2013-07-19

摘要: 花粉管极性生长受多种信号与代谢过程的调控,主要包括Rop GTPase信号途径、磷脂酰肌醇信号通路、Ca2+信号途径、肌动蛋白动态变化、囊泡运输、细胞壁重塑等,这些过程都受到蛋白质可逆磷酸化作用的调节。如:(1) Rop调节蛋白(GEF、GDI和GAP)的可逆磷酸化可以改变其活性,从而调节Rop GTPase;同时,蛋白激酶还可能作为Rop下游的效应器分子参与Rop下游信号途径的调节;(2) 蛋白质可逆磷酸化作用既能够激活/失活质膜上的Ca2+通道或Ca2+泵,又参与调节胞内贮存Ca2+的释放,从而调控花粉管尖端Ca2+梯度的形成;此外,蛋白激酶还作为Ca2+信号的感受器,磷酸化相应的靶蛋白,参与Ca2+信号下游途径的调节;(3) 肌动蛋白结合蛋白(ADF和Profilin)的活性也受到蛋白质可逆磷酸化的调节,进而调控肌动蛋白聚合与解聚之间的动态平衡;(4) 蛋白质磷酸化作用调节胞吞/胞吐相关蛋白的活性,并调控质膜的磷脂代谢,从而参与调控囊泡运输过程;(5) 胞质丝氨酸/苏氨酸蛋白激酶和蔗糖合酶的可逆磷酸化可以调节其在花粉管中的功能与分布模式,参与花粉管细胞壁重塑;(6) 转录调节蛋白与真核生物翻译起始因子的可逆磷酸化可以改变其活性,从而调控RNA转录与蛋白质合成。文章主要综述了花粉管生长过程中重要蛋白质的可逆磷酸化作用对上述关键事件的调节。

关键词: 花粉管, 极性生长, 蛋白质, 可逆磷酸化

Abstract: The tip-growth of pollen tube is regulated by diverse signaling and metabolic processes, including Rop GTPase signaling pathway, phosphatidylinositol signaling pathway, Ca2+ signaling, actin dynamics, vesicular trafficking, and cell wall re-modulation. These processes are regulated by reversible protein phosphorylation events: (1) The activities of Rop regulatory proteins (GEF, GDI, and GAP) that regulate Rop GTPase are variable under different protein phosphorylation states. In addition, various protein kinases function as the downstream effectors of Rop GTPase, and participate in the downstream pathways of Rop signaling. (2) Reversible protein phosphorylation can activate/inactivate the plasma membrane (PM) Ca2+ channels and/or Ca2+ pump, as well as control the release of intracellular Ca2+, thereby regulating the formation of Ca2+ gradient in pollen tube tip. In addition, protein kinases function as Ca2+ sensors and phosphorylate the target proteins involved in the downstream regulatory pathways of Ca2+ signaling. (3) The dynamics of actin polymerization and depolymerization are regulated by reversible phosphorylation of actin binding proteins (e.g., ADF and profilin). (4) Reversible protein phosphorylation regulates the activities of endo/exocytosis-related proteins and PM phospholipid metabolism that are involved in the membrane trafficking. (5) Reversible protein phosphorylation participates in the pollen tube cell wall re-modulation through regulating the function and subcellular distribution of cytoplasmic serine/threonine protein kinase and sucrose synthase. (6) The activities of transcription regulatory protein and eukaryotic translation initiation factor are regulated by protein phosphorylation, modulating the RNA transcription and protein synthesis. In this review, we present an overview of the functions of protein reversible phosphorylation in the aforementioned processes during the pollen tube tip-growth.

Key words: pollen tube, polarized growth, protein, reversible phosphorylation