遗传 ›› 2014, Vol. 36 ›› Issue (8): 766-778.doi: 10.3724/SP.J.1005.2014.0766
索金伟, 戴绍军
收稿日期:
2014-01-22
出版日期:
2014-08-20
发布日期:
2013-07-19
通讯作者:
戴绍军,教授,博士生导师,研究方向:植物蛋白质组学。E-mail:daishaojun@hotmail.com
作者简介:
索金伟,博士研究生,研究方向:植物蛋白质组学。E-mail: suojinwei@foxmail.com
基金资助:
Jinwei Suo, Shaojun Dai
Received:
2014-01-22
Online:
2014-08-20
Published:
2013-07-19
摘要: 花粉管极性生长受多种信号与代谢过程的调控,主要包括Rop GTPase信号途径、磷脂酰肌醇信号通路、Ca2+信号途径、肌动蛋白动态变化、囊泡运输、细胞壁重塑等,这些过程都受到蛋白质可逆磷酸化作用的调节。如:(1) Rop调节蛋白(GEF、GDI和GAP)的可逆磷酸化可以改变其活性,从而调节Rop GTPase;同时,蛋白激酶还可能作为Rop下游的效应器分子参与Rop下游信号途径的调节;(2) 蛋白质可逆磷酸化作用既能够激活/失活质膜上的Ca2+通道或Ca2+泵,又参与调节胞内贮存Ca2+的释放,从而调控花粉管尖端Ca2+梯度的形成;此外,蛋白激酶还作为Ca2+信号的感受器,磷酸化相应的靶蛋白,参与Ca2+信号下游途径的调节;(3) 肌动蛋白结合蛋白(ADF和Profilin)的活性也受到蛋白质可逆磷酸化的调节,进而调控肌动蛋白聚合与解聚之间的动态平衡;(4) 蛋白质磷酸化作用调节胞吞/胞吐相关蛋白的活性,并调控质膜的磷脂代谢,从而参与调控囊泡运输过程;(5) 胞质丝氨酸/苏氨酸蛋白激酶和蔗糖合酶的可逆磷酸化可以调节其在花粉管中的功能与分布模式,参与花粉管细胞壁重塑;(6) 转录调节蛋白与真核生物翻译起始因子的可逆磷酸化可以改变其活性,从而调控RNA转录与蛋白质合成。文章主要综述了花粉管生长过程中重要蛋白质的可逆磷酸化作用对上述关键事件的调节。
索金伟, 戴绍军. 蛋白质可逆磷酸化对花粉管生长的调控作用[J]. 遗传, 2014, 36(8): 766-778.
Jinwei Suo, Shaojun Dai. Regulation of pollen tube growth by reversible protein phosphorylation[J]. HEREDITAS(Beijing), 2014, 36(8): 766-778.
[1] Y, Yang ZB. Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol , 2011, 22(8): 816-824. [2] YM, Liu P, Hoehenwarter W, Lin JX. Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation. J Proteome Res , 2012, 11(8): 4180-4190. [3] J, Matros A, Radau S, Zahedi RP, Čapková V, Mock HP, Honys D. Revealing phosphoproteins playing role in tobacco pollen activated in vitro . Proteomics , 2012, 12(21): 3229-3250. [4] P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nühse T, Grossniklaus U. Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J , 2012, 72(1): 89-101. [5] Y, Li SD, Lord EM, Yang ZB. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell , 2006, 18(2): 366-381. [6] ZX, Liu D. ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABA-mediated stomatal closure in Arabidopsis . FEBS Lett , 2012, 586(9): 1253-1258. [7] JU, Wu G, Yan A, Lee YJ, Grierson CS, Yang ZB. Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. J Cell Sci , 2010, 123(3): 340-350. [8] U, Kost B. Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell , 2006, 18(11): 3033-3046. [9] GM, Dowd PE, Gilroy S, McCubbin AG. Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell , 2006, 18(4): 867-878. [10] U, Becker C, Schmitt AC, Kost B. Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J , 2006, 46(6): 1018-1031. [11] A., Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature , 2005, 436(7054): 1176-1180. [12] Y, McCormick S. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana . Proc Natl Acad Sci USA , 2007, 104(47): 18830-18835. [13] D, Wengier D, Shuai B, Gui CP, Muschietti J, McCormick S, Tang WH. The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol , 2008, 148(3): 1368-1379. [14] F, Gu Y, Ma H, Yang ZB. AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol Plant , 2013, 6(4): 1187-1201. [15] T, Mazzella A, Barberini ML, Wengier D, Motillo V, Parisi G, Muschietti J. Mutations in two putative phosphorylation motifs in the tomato pollen receptor kinase LePRK2 show antagonistic effects on pollen tube length. J Biol Chem , 2011, 286(6): 4882-4891. [16] XY, Wang Q, Li S, Ge FR, Zhou LZ, McCormick S, Zhang Y. The juxtamembrane and carboxy-terminal domains of Arabidopsis PRK2 are critical for ROP-induced growth in pollen tubes. J Exp Bot , 2013, 64(18): 5599-5610. [17] JH, Lee HS, Kao TH. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell , 1994, 6(5): 709-721. [18] W, Ezcurra I, Muschietti J, McCormick S. A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell , 2002, 14(9): 2277-2287. [19] V, Tang WH, Monti MM, Raiola A, Lorenzo GD, McCormick S, Taylor LP. Antisense phenotypes reveal a role for SHY, a pollen-specific Leucine-rich repeat protein, in pollen tube growth. Plant J , 2004, 39(4): 643-654. [20] DL, Mazzella MA, Salem TM, McCormick S, Muschietti JP. STIL, a peculiar molecule from styles, specifically dephosphorylates the pollen receptor kinase LePRK2 and stimulates pollen tube growth in vitro . BMC Plant Biol , 2010, 10(1): 33. [21] AL, McCubbin AG, Ishimizu T, Wang X, Hu Y, Dowd PE, Ma H, Kao TH. Isolation and characterization of kinase interacting protein 1, a pollen protein that interacts with the kinase domain of PRK1, a receptor-like kinase of petunia . Plant Physiol , 2001, 126(4): 1480-1492. [22] AL, Dowd PE, Sijacic P, Jaworski CJ, Gilroy S, Kao TH. Identification and characterization of PiORP1, a Petunia oxysterol-binding-protein related protein involved in receptor-kinase mediated signaling in pollen, and analysis of the ORP gene family in Arabidopsis . Plant Mol Biol , 2006, 61(4-5): 553-565. [23] G, Gu Y, Li SD, Yang ZB. A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell , 2001, 13(12): 2841-2856. [24] S, Gu Y, Yan A, Lord E, Yang ZB. RIP1 (ROP Interactive Partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Mol Plant , 2008, 1(6): 1021-1035. [25] ME. Characterization of ROP GTPase-activated Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI_A). Hungary: Hungarian Academy of Sciences, 2011. [26] SW, Wang CS. Lily Cdc42/Rac-interactive binding motif-containing protein, a Rop target, involves calcium influx and phosphoproteins during pollen germination and tube growth. Plant Signal Behav , 2010, 5(11): 1460-1463. [27] HY, Shang ZL, Zhang SL, Liu LM, Wu JY. Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia . New Phytol , 2007, 174(3): 524-536. [28] F, Yan A, Zhao LN, Wu WH, Yang ZB. A putative calcium-permeable cyclic nucleotide-gated channel, CNGC18, regulates polarized pollen tube growth. J Integr Plant Biol , 2007, 49(8): 1261-1270. [29] YS, Xu XD, Li SJ, Liu T, Ma LG, Shang ZG. Heterotrimeric G-protein participation in Arabidopsis pollen germination through modulation of a plasma membrane hyperpolarization-activated Ca 2+ -permeable channel. New Phytol , 2007, 176(3): 550-559. [30] UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev , 2002, 82(3): 769-824. [31] LM, Lan WZ, Jiang YQ, Fang W, Luan S. A Calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol Plant , 2013, 7(2): 369-376. [32] VE, Drobak BK, Allan AC, Watkins P, Trewavas AJ. Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1, 4, 5-trisphosphate. Plant Cell , 1996, 8(8): 1305- 1321. [33] B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH. Rac homologues and compartmen-talized phosphatidylinositol 4, 5-bisphosphate act in a com-mon pathway to regulate polar pollen tube growth. J Cell Biol , 1999, 145(2): 317-330. [34] D, Liu Q, Lisboa S, Scherer GE, Quader H, Malhó R. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca 2+ ] c and membrane secretion. J Exp Bot , 2005, 56(416): 1665-1674. [35] M, Romanowsky SM, Bækgaard L, Jakobsen MK, Palmgren MG, Harper JF. A plant plasma membrane Ca 2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA , 2004, 101(25): 9502-9507. [36] JF, Hong B, Hwang I, Guo HQ, Stoddard R, Huang JF, Palmgren MG, Sze H. A novel calmodulin-regulated Ca 2+ -ATPase (ACA2) from Arabidopsis with an N-term-inal autoinhibitory domain. J Biol Chem , 1998, 273(2): 1099-1106. [37] I, Sze H, Harper JF. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca 2+ pump (ACA2) located in the endoplasmic reticulum of Ar a bi dopsis . Proc Natl Acad Sci USA , 2000, 97(11): 6224-6229. [38] LM, Fu Y, Yang ZB. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. J Integr Plant Biol , 2009, 51(8): 751-761. [39] JJ, Kadwell S, Merlin E, Crossland L. Cloning and characterization of a maize pollen-specific calcium-dep-endent calmodulin-independent protein kinase. Proc Natl Acad Sci USA , 1994, 91(19): 8837-8841. [40] C, Romanowsky SM, Barron YD, Garg S, Azuse CL, Curran A, Davis RM, Hatton J, Harmon AC, Harper JF. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J , 2009, 59(4): 528-539. [41] LN, Shen LK, Zhang WZ, Zhang W, Wang Y, Wu WH. Ca 2+ -dependent protein kinase11 and 24 modulate the activity of the inward rectifying K + channels in Ar a bidopsis pollen tubes. Plant Cell , 2013, 25(2): 649-661. [42] T, Lassig R, Portes MT, Maierhofer T, Romeis T, Borst JW, Hedrich R, Feijó JA, Konrad KR. Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dep-endent protein kinases CPK2 and CPK20. Plant Cell , 2013, 25(11): 4525-4543. [43] F. Investigation into the functions of the pollen specific genes PiVAMP721 and PiSCP1 in pollen tube growth. Washington: Washington State University, 2008. [44] F, Yoon GM, McCubbin AG. PiSCP1 and PiCDPK2 Localize to peroxisomes and are involved in pollen tube growth in Petunia Inflata . Plants , 2013, 2(1): 72-86. [45] A, Steinhorst L, Han JP, Shen LK, Wang Y, Kudla J. The Calcineurin B-like Ca 2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis . Mol Plant , 2013, 6(4): 1149-1162. [46] J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH. A protein kinase, interacting with two calcineurin B-like proteins, regulates K + transporter AKT1 in Arabidopsis . Cell , 2006, 125(7): 1347-1360. [47] K, Véry AA, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud JB, Sentenac H. Pollen tube development and competitive ability are impaired by disruption of a Shaker K + channel in Arabidopsis . Genes Dev , 2002, 16(3): 339-350. [48] HY, Xiang Y. The function of actin-binding proteins in pollen tube growth. Protoplasma , 2007, 230(3-4): 171- 182. [49] I, Grolig F, Obermeyer G. Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton: effects of calyculin A and okadaic acid. Protoplasma , 2002, 220(1-2): 1-15. [50] HJ, Xiang Y, Li M, Wang T, Ren HY. Reversible protein tyrosine phosphorylation affects pollen germination and pollen tube growth via the actin cytoskeleton. Prot o plasma , 2007, 230(3-4): 183-191. [51] A, Giuliani C, Valenta R, Mittermann I, Heberle-Bors E, Wilson C. MAP kinase phosphorylation of plant profilin. Biochem Bioph Res Commun , 2004, 324(1): 382-386. [52] V, Aionesei T, Limmongkon A, Barinova I, Touraev A, Laurière C, Coronado MJ, Testillano PS, Risueño MC, Heberle-Bors E, Wilson C. The MAP kinase kinase NtMEK2 is involved in tobacco pollen germination. FEBS Lett , 2004, 560(1): 86-90. [53] MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol , 1997, 136(6): 1307-1322. [54] CY, Cheung AY, Wu HM. Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell , 2003, 15(1): 237-249. [55] EG, Smertenko AP, Hussey PJ. Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett , 2001, 499(1-2): 97-100. [56] T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I. Phosphatidylinositol-4, 5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum . Plant J , 2011, 65(3): 453-468. [57] A. Analysis of an Actin Binding Guanine Exchange Factor, GEF8, and Actin depolymerizing factor in Arabidopsis Thaliana . America: University of Massachusetts Amherst, 2010. [58] J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES, Rongen G. Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma , 1995, 188(3-4): 267-276. [59] F, McCubbin AG. The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo-and exocytic compartments in pollen tube tip growth. J Exp Bot , 2012, 63(8): 3083-3095. [60] Y, McCormick S. The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. Sex Plant Reprod , 2010, 23(2): 87-93. [61] Y, He J, Lee D, McCormick S. Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol , 2010, 152(4): 2200-2210. [62] T, Stenzel I, Heilmann I. Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell , 2008, 20(12): 3312-3330. [63] E, Kost B, Malhó R. Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell , 2008, 20(11): 3050-3064. [64] Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell , 2010, 22(12): 4031- 4044. [65] R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M, Marc J, Žárský V, Potocký M. Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front Plant Sci , 2012, 3: 54. [66] JC, Leroux C, Dardelle F, Lehner A. Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants , 2013, 2(1): 107-147. [67] A, Steer MW. The Architecture and Properties of the Pollen Tube Cell Wall. In: Malhó R, ed. The Pollen Tube: a Cellular and Molecular Perspective. Berlin: Springer, 2006, 3: 177-200. [68] A, Kozlovsky SV, Tian GW, Chen MH, Zaltsman A, Citovsky V. How pollen tubes grow. Dev Biol , 2007, 303(2): 405-420. [69] MM, Pinto S, Kluth J, Wienand U, Lorbiecke R. The PTI1-like kinase ZmPti1a from maize ( Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC Plant Biol , 2006, 6: 22. [70] D, Cai G, Del Casino C, Faleri C, Willemse MTM, Cresti M. Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol , 2008, 147(4): 1603-1618. [71] DPS, Hong ZL. Plant callose synthase complexes. Plant Mol Biol , 2001, 47(6): 693-701. [72] H, Huber JL, Huber SC. Membrane association of sucrose synthase changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett , 1997, 420(2-3): 151-155. [73] SC, Winter H, Huber SC. Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiol , 2004, 134(4): 1427-1438. [74] CW, Chen WC, Lin LJ, Lee CT, Tseng TH, Leu WM. OIP30, a RuvB-like DNA helicase 2, is a potential substrate for the pollen-predominant OsCPK25/26 in rice. Plant Cell Physiol , 2011, 52(9): 1641-1656. [75] JJ, Liang Y, Niu QK, Chen LQ, Zhang XQ, Ye D. The Arabidopsis general transcription factor TFIIB1 (AtTFIIB1) is required for pollen tube growth and endosperm development. J Exp Bot , 2013, 64(8): 2205-2218. [76] den Camp RGL, Kuhlemeier C. Phosphorylation of tobacco eukaryotic translation initiation factor 4A upon pollen tube germination. Nucleic Acids Res , 1998, 26(9): 2058-2062. |
[1] | 吕丹丹,张媛雅,葛海涛,黄夏禾,汪迎春. 大规模膜蛋白质组鉴定技术进展[J]. 遗传, 2019, 41(9): 863-874. |
[2] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[3] | 胡立桥,周兆才,田伟. Hippo信号通路结构生物学研究进展[J]. 遗传, 2017, 39(7): 659-674. |
[4] | 谢德健, 师明磊, 张彦, 王天艺, 沈文龙, 叶丙雨, 李平, 何超, 张香媛, 赵志虎. 利用CRISPR/Cas9技术构建CTCF蛋白降解细胞系[J]. 遗传, 2016, 38(7): 651-657. |
[5] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
[6] | 徐苹,杨晶,陆丽兰,冯尔玲,王恒樑,卢瑛,朱力. 密度感应系统对弗氏志贺菌生长竞争能力的影响[J]. 遗传, 2015, 37(5): 487-493. |
[7] | 蒲强,罗嘉,沈林園,李学伟,张顺华,朱砺. 蛋白质修饰组学在肉品质研究中的应用[J]. 遗传, 2015, 37(4): 327-335. |
[8] | 陈志林, 冯美莹, 陈预明, 卫恒习, 李莉, 吴同山, 张守全. 精子功能相关的蛋白质调控受精过程的研究进展[J]. 遗传, 2014, 36(8): 747-755. |
[9] | 周坤, 张今今. 植物中的NO及其对花发育的调节[J]. 遗传, 2014, 36(7): 661-668. |
[10] | 赵小蕾, 左晓宇, 覃继恒, 梁岩, 张乃尊, 栾奕昭, 饶绍奇. 基于蛋白质互作知识的生物学通路扩充新方法[J]. 遗传, 2014, 36(4): 387-394. |
[11] | 李灵, 宋旭. 长链非编码RNA在生物体中的调控作用[J]. 遗传, 2014, 36(3): 228-236. |
[12] | 章玉婷 周德群 苏源 余萍 周晓罡 姚春馨. 干旱胁迫条件下马铃薯耐旱品种宁蒗182叶片蛋白质组学分析[J]. 遗传, 2013, 35(5): 666-672. |
[13] | 杨姗姗,孙晓丽,于洋,才华,纪巍,柏锡,朱延明. 酵母双杂交筛选与GsCBRLK相互作用的蛋白质[J]. 遗传, 2013, 35(3): 388-394. |
[14] | 赵艳 李燕燕. 组学技术评价转基因农作物的非预期效应[J]. 遗传, 2013, 35(12): 1360-1367. |
[15] | 王明强 武金霞 张玉红 韩凝 边红武 朱睦元. 蛋白质相互作用实验技术的最新进展[J]. 遗传, 2013, 35(11): 1274-1283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: