遗传 ›› 2023, Vol. 45 ›› Issue (9): 835-844.doi: 10.16288/j.yczz.23-064
郑镇武1,2(), 赵宏源1,2, 梁晓娅1,2, 王一珺1,2, 王驰航1,2, 巩高洋1,2, 黄金燕1,2, 张桂权1,2, 王少奎1,2(), 刘祖培1,2()
收稿日期:
2023-03-20
修回日期:
2023-06-27
出版日期:
2023-09-20
发布日期:
2023-07-28
通讯作者:
王少奎,刘祖培
E-mail:958779674@qq.com;lzp2020@scau.edu.cn;shaokuiwang@scau.edu.cn
作者简介:
郑镇武,硕士研究生,专业方向:作物遗传育种。E-mail: 基金资助:
Zhenwu Zheng1,2(), Hongyuan Zhao1,2, Xiaoya Liang1,2, Yijun Wang1,2, Chihang Wang1,2, Gaoyan Gong1,2, Jinyan Huang1,2, Guiquan Zhang1,2, Shaokui Wang1,2(), Zupei Liu1,2()
Received:
2023-03-20
Revised:
2023-06-27
Online:
2023-09-20
Published:
2023-07-28
Contact:
Shaokui Wang,Zupei Liu
E-mail:958779674@qq.com;lzp2020@scau.edu.cn;shaokuiwang@scau.edu.cn
Supported by:
摘要:
籽粒大小与株型对水稻产量具有重要影响,因此其相关基因克隆与功能研究对培育高产水稻具有重大的意义。本研究从以短舌野生稻为供体、华粳籼74 (HJX74)为受体的染色体单片段代换系(SSSLs)中鉴定到一个新的调控籽粒大小与株型的QTL位点qGL3.4。与对照HJX74相比,近等基因系NIL-qGL3.4的粒长、粒宽、千粒重、穗长、穗粒数、一次枝梗数、单株产量与株高显著增加,而NIL-qGL3.4的分蘖数和二级枝梗数与HJX74对应值无显著差异。通过图位克隆,将qGL3.4定位在第3号染色体239.18 kb区间内。细胞学分析表明,NIL-qGL3.4通过调节颖壳细胞的生长进而调控籽粒的大小。分子机理研究表明,qGL3.4可能通过调控籽粒大小相关基因EXPANSINs、GS3、GL3.1、PGL1、GL7、OsSPL13和GS5的表达进而调控籽粒大小。本研究可能为高产与理想株型的水稻培育提供新的靶标位点。
郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844.
Zhenwu Zheng, Hongyuan Zhao, Xiaoya Liang, Yijun Wang, Chihang Wang, Gaoyan Gong, Jinyan Huang, Guiquan Zhang, Shaokui Wang, Zupei Liu. qGL3.4 controls kernel size and plant architecture in rice[J]. Hereditas(Beijing), 2023, 45(9): 835-844.
图1
HJX74和NIL-qGL3.4表型数据 A:NIL-qGL3.4与HJX74的粒长表型,bar=5 mm;B:NIL-qGL3.4与HJX74的粒宽表型,bar=5 mm;C:NIL-qGL3.4与HJX74的株型,bar=25 cm;D:NIL-qGL3.4与HJX74的穗型,bar=5 cm;E:NIL-qGL3.4与HJX74的穗展开图,bar=5 cm;F:NIL-qGL3.4与HJX74的粒长(n=100);G:NIL-qGL3.4与HJX74的粒宽(n=100);H:NIL-qGL3.4与HJX74的千粒重(n=100);I:NIL-qGL3.4与HJX74的穗长(n=20);J:NIL-qGL3.4与HJX74的株高(n=20);K:NIL-qGL3.4与HJX74的一次枝梗数(n=20);L:NIL-qGL3.4与HJX74的每穗粒数(n=15);M:NIL-qGL3.4与HJX74的单株产量(n=20)。数据为平均值±标准误,t检验用于评估P值,*表示P≤0.05,**表示P≤0.01。"
附表1
定位区间内注释基因信息"
登录号 | 是否克隆 | 功能 |
---|---|---|
LOC_Os03g11790 | 未克隆 | OsFBX79,含有F-box结构域的蛋白 |
LOC_Os03g11810 | 未克隆 | 表达蛋白 |
LOC_Os03g11819 | 未克隆 | 表达蛋白 |
LOC_Os03g11830 | 未克隆 | 转座子蛋白,假定 |
LOC_Os03g11840 | 未克隆 | 表达蛋白 |
LOC_Os03g11850 | 未克隆 | 逆转录转座子,Ty1-copia亚类,假定 |
LOC_Os03g11860 | 未克隆 | 表达蛋白 |
LOC_Os03g11874 | 未克隆 | 表达蛋白 |
LOC_Os03g11890 | 未克隆 | 马铃薯Y病毒VPg相互作用蛋白,假定 |
LOC_Os03g11900 | 已克隆 | 单糖转运蛋白,调节一系列单糖的跨膜运输 |
LOC_Os03g11910 | 未克隆 | Dnak家族蛋白,假定 |
LOC_Os03g11930 | 未克隆 | 表达蛋白 |
LOC_Os03g11950 | 未克隆 | SEC14胞质因子家族蛋白,假定 |
LOC_Os03g11960 | 未克隆 | 铜/锌超氧化物歧化酶,假定 |
LOC_Os03g11970 | 未克隆 | 含有微管蛋白/FtsZ结构域的蛋白质,假定 |
LOC_Os03g11980 | 未克隆 | β-氨基己糖苷酶前体,假定 |
LOC_Os03g11990 | 未克隆 | bolA,假定 |
LOC_Os03g12000 | 未克隆 | DEAD-box ATP-dependent RNA解旋酶,假定 |
LOC_Os03g12010 | 未克隆 | 表达蛋白 |
LOC_Os03g12020 | 未克隆 | 50S核糖体蛋白L15,叶绿体前体,假定 |
LOC_Os03g12030 | 已克隆 | 编码脂肪酸延长酶,影响结实率和叶片角质层蜡的含量 |
LOC_Os03g12040 | 未克隆 | 表达蛋白 |
LOC_Os03g12050 | 未克隆 | 表达蛋白 |
LOC_Os03g12064 | 未克隆 | 表达蛋白 |
LOC_Os03g12080 | 未克隆 | 逆转录转座子蛋白,假定 |
LOC_Os03g12100 | 未克隆 | 逆转录转座子,假定 |
LOC_Os03g12110 | 未克隆 | 高半胱氨酸S-甲基转移酶蛋白,假定 |
LOC_Os03g12120 | 未克隆 | 无顶端分生组织蛋白,假定 |
LOC_Os03g12140 | 未克隆 | 葡聚糖内切-1,3-β-葡萄糖苷酶前体,假定 |
LOC_Os03g12150 | 未克隆 | 丝氨酸/苏氨酸蛋白激酶受体前体,假定 |
LOC_Os03g12160 | 未克隆 | 富含亮氨酸重复家族蛋白,假定 |
LOC_Os03g12170 | 未克隆 | 表达蛋白 |
LOC_Os03g12190 | 未克隆 | OsFBX80,含有F-box结构域的蛋白 |
LOC_Os03g12200 | 未克隆 | OsFBX81,含有F-box结构域的蛋白 |
LOC_Os03g12210 | 未克隆 | 表达蛋白 |
附表2
NIL-qGL3.4不同季节表型数据"
季度 | 材料名称 | 粒长 | 粒宽 | 千粒重 | 株高 | 分蘖数 | 穗长 | 单株产量 |
---|---|---|---|---|---|---|---|---|
2021晚季 | HJX74 | 8.285±0.153 | 2.642±0.111 | 21.053±0.222 | 103.9±4.3 | 7.8±0.91 | 21.46±1.67 | 22.72±1.37 |
NIL-qGL3.4 | 8.649±0.224** | 2.768±0.117* | 23.837±0.318** | 107.7±3.9** | 8.2±1.02 | 23.47±1.19** | 24.68±1.24** | |
2022早季 | HJX74 | 8.326±0.176 | 2.673±0.134 | 22.993±0.492 | 102.5±5.2 | 6.8±1.13 | 21.64±1.16 | 23.62±2.18 |
NIL-qGL3.4 | 8.721±0.159** | 2.804±0.138** | 25.673±0.632** | 110.2±6.8** | 7.4±1.02 | 24.63±2.27** | 25.73±1.69** | |
2022晚季 | HJX74 | 8.264±0.253 | 2.666±0.113 | 22.872±0.142 | 100.7±4.9 | 7.5±1.34 | 22.11±1.58 | 22.57±1.44 |
NIL-qGL3.4 | 8.678±0.231** | 2.768±0.142* | 25.028±0.337** | 108.2±3.8** | 7.4±1.22 | 23.89±1.26** | 24.92±2.01** |
附表3
本研究所用引物列表"
引物名称 | 序列 | 目的 |
---|---|---|
RM545F | CAATGGCAGAGACCCAAAAG | 定位 |
RM545R | CTGGCATGTAACGACAGTGG | 定位 |
OSR16F | AAAACTAGCTTGCAAAGGGGA | 定位 |
OSR16R | TGCCGGCTGATCTTGTTCTC | 定位 |
RM7576F | CTGCCCTGCCTTTTGTACAC | 定位 |
RM7576R | GCGAGCATTCTTTCTTCCAC | 定位 |
RM517F | GGCTTACTGGCTTCGATTTG | 定位 |
RM517R | CGTCTCCTTTGGTTAGTGCC | 定位 |
RM6291F | CGCTGGAACGAGACGAAC | 定位 |
RM6291R | TGGGTTGGGCTCTACAAAAC | 定位 |
PSM428F | GATAGAGCAGGGCTGGAACA | 定位 |
PSM428R | ATGCTTGCCTTAGTGTCCG | 定位 |
RM3766F | TTATAGAGCCAACACAACGG | 定位 |
RM3766R | ATCGATCTCTCTCCTGGAAA | 定位 |
RM3545F | TATCGGCATCAGGGTTCTTC | 定位 |
RM3545R | ATAGCCGTCTTCACCGACAC | 定位 |
RM5639F | GGAAGAACAGAGTTGCTCGG | 定位 |
RM5639R | GTGCCATTTATTTCCGTCCC | 定位 |
RM1338F | GAAGGGATTCAAGGGGTAGG | 定位 |
RM1338R | TCCAGTCATCCCTGTGAAAG | 定位 |
RM5944F | GAGCCGCATCAACCAGTTAC | 定位 |
RM5944R | CAGTACAGCGCGCACTACAC | 定位 |
RM282F | CTGTGTCGAAAGGCTGCAC | 定位 |
RM282R | CAGTCCTGTGTTGCAGCAAG | 定位 |
ZID16-F | AAAATGGAAGCAGGGAAAG | 定位 |
ZID16-R | CTGCCACTACACGGGAGA | 定位 |
ZID3-F | AGCAAGCCAATGGAGGGT | 定位 |
ZID3-R | AACTGAACAAGACAGGGA | 定位 |
ZID10-F | TTGTGCGCTGACCACAAT | 定位 |
ZID10-R | GCCCAACCAATGCAAGTC | 定位 |
ZID14-F | TCTTGTCACAGTGATCCACA | 定位 |
ZID14-R | TTCCTTTAGCTAGTGAAGTTGT | 定位 |
ZID-39F | AAGAGCCCTCGATGTTGA | 定位 |
ZID-39R | GGTGGCAATGCAATGTTT | 定位 |
PA5-F | ACTTCTGCCCGCCGAACAAC | RT-qPCR分析 |
PA5-R | GCCTTGAAGAGAGCGATGCG | RT-qPCR分析 |
EXPA13-F | CCTGGGAGAAGATCGGCATC | RT-qPCR分析 |
EXPA13-R | GAAGTAGTCGTGCCCGTTG | RT-qPCR分析 |
EXPA24-F | TCTACCGTGCTGGCATCATC | RT-qPCR分析 |
EXLA4-F | TAAGGTGCAGAGACCGGAG | RT-qPCR分析 |
EXLA4-R | TCCTCGGTGATGCGAAACTG | RT-qPCR分析 |
EXPB3-F | AAGATGCGTCAACCACCCTG | RT-qPCR分析 |
EXPB3-R | AGTGGTACTTGGAAACGGGG | RT-qPCR分析 |
EXPB6-F | GCCTCGACTCCAACCAC | RT-qPCR分析 |
EXPB6-R | CTAGCTGAACTGGACGATGG | RT-qPCR分析 |
EXPB7-F | TTCAAGGACGGCAAGGGATG | RT-qPCR分析 |
EXPB7-R | GGTACAGCGACACTGGGTAG | RT-qPCR分析 |
EXPB14-F | AGCTCCCAGTCCAATACGC | RT-qPCR分析 |
EXPB14-R | CGAGGTAGTACTGGTTGGAGC | RT-qPCR分析 |
qGS3F | CATCGGAGAAGCGAAGTCAT | RT-qPCR分析 |
qGS3R | TTGAGGTTGAAGGAGGAGGA | RT-qPCR分析 |
qGL7F | CCCCTAGCATCGACACCAAG | RT-qPCR分析 |
qGL7R | CGGGTTCCAGCACTCCTCT | RT-qPCR分析 |
qGS5F | AGTGGACTGCTTCCAGGGAAG | RT-qPCR分析 |
qGS5R | CACGCAGTACCGAGAACTGA | RT-qPCR分析 |
qPGL1F | GCGTCATGAACTTCACCTTCTTCTC | RT-qPCR分析 |
qPGL1R | ATCGACATCATCTGCACCTGCA | RT-qPCR分析 |
qGL3.1F | TCACAACTCCCAGGATAGG | RT-qPCR分析 |
qGL3.1R | TTTGTCTCGCTCGCTCAT | RT-qPCR分析 |
qOsSPL13F | AACCCGCCGTTCCAGATCAG | RT-qPCR分析 |
qOsSPL13R | AAGAAGGGACGTAGGTGGTG | RT-qPCR分析 |
qActin-F | GCTATGTACGTCGCCATCCAG | RT-qPCR分析 |
qActin-R | AATGAGTAACCACGCTCCGTCA | RT-qPCR分析 |
qLOC_Os03g11790-F | GCTTCTCCTTTGTTGGAGAC | RT-qPCR分析 |
qLOC_Os03g11790-R | AAGGCACTCAAGCGAAGTTG | RT-qPCR分析 |
qLOC_Os03g11810-F | GAGGGAAGCACGGCGATGGG | RT-qPCR分析 |
qLOC_Os03g11810-R | GTCCTCAGATATCGCTTTGC | RT-qPCR分析 |
qLOC_Os03g11819-F | GAGCCGGAAGAAATTTTGTC | RT-qPCR分析 |
qLOC_Os03g11819-R | AAACAACCGGAGACAAGATG | RT-qPCR分析 |
qLOC_Os03g11830-F | CCGTGACCGAGACTACTTCG | RT-qPCR分析 |
qLOC_Os03g11830-R | CTGCACCGTGCAAGTCGTCG | RT-qPCR分析 |
qLOC_Os03g11840-F | CACTCACTTCCGGAGGCAG | RT-qPCR分析 |
qLOC_Os03g11840-R | CACTGAGGCGACGCCTGATG | RT-qPCR分析 |
qLOC_Os03g11850-F | TGTACTAGAAGGTCAGGAGG | RT-qPCR分析 |
qLOC_Os03g11850-R | GCTAGCCAAGTACATCAATG | RT-qPCR分析 |
qLOC_Os03g11860-F | GATTTCATACATGGAAACG | RT-qPCR分析 |
qLOC_Os03g11860-R | TGGACTGCCGGGCTGCACGG | RT-qPCR分析 |
qLOC_Os03g11874-F | CCATATGTCTAAGGCAAATC | RT-qPCR分析 |
qLOC_Os03g11874-R | CAGACATCGATGTTGCCGTC | RT-qPCR分析 |
qLOC_Os03g11890-F | GGAGGAAGCGATGGCATTAG | RT-qPCR分析 |
qLOC_Os03g11890-R | CATTGCTTCCTTTACAGTGC | RT-qPCR分析 |
qLOC_Os03g11900-F | CCAGCTCAACGTCACCATCG | RT-qPCR分析 |
qLOC_Os03g11900-R | AGCAGCACGGCGATCACCAG | RT-qPCR分析 |
qLOC_Os03g11910-F | CTGACCCTTCAGGGAGCCTG | RT-qPCR分析 |
qLOC_Os03g11910-R | TCGACGGTGCCCTTTGCTGC | RT-qPCR分析 |
qLOC_Os03g11930-F | GGATTCTCTGCCGGTGAAAG | RT-qPCR分析 |
qLOC_Os03g11930-R | ACTGTCGCTGCCGTCACCAG | RT-qPCR分析 |
qLOC_Os03g11950-F | GATCGTCGCCGACTACTACC | RT-qPCR分析 |
qLOC_Os03g11950-R | GGCTTGAGGGTGTTGTCGTG | RT-qPCR分析 |
qLOC_Os03g11960-F | CCTCACAATAAGTCCCATGG | RT-qPCR分析 |
qLOC_Os03g11960-R | AGATCGAAGTCCAATGATAC | RT-qPCR分析 |
qLOC_Os03g11970-F | TCGAGCCCGCCAGCGTCATG | RT-qPCR分析 |
qLOC_Os03g11970-R | ACGCGCGCTTGGCGTACATG | RT-qPCR分析 |
qLOC_Os03g11980-F | CATCGTCCTCCCTACCGTCC | RT-qPCR分析 |
qLOC_Os03g11980-R | GCACCACCGGGTCGTCCTCC | RT-qPCR分析 |
qLOC_Os03g11990-F | GGCACTAGTGCTATGCTTTC | RT-qPCR分析 |
qLOC_Os03g11990-R | CATGAAGTCCTGAGTTCAAC | RT-qPCR分析 |
qLOC_Os03g12000-F | ATACGAGCAGCCAGGAGTTG | RT-qPCR分析 |
qLOC_Os03g12000-R | CTCAGTAGCTTTCATCCCAC | RT-qPCR分析 |
qLOC_Os03g12010-F | GGAATCCAATAGTGGCAGTG | RT-qPCR分析 |
qLOC_Os03g12010-R | GCTTGGCCAGCTTGATCCTC | RT-qPCR分析 |
qLOC_Os03g12020-F | TGGTGACGAGATATCATTGG | RT-qPCR分析 |
qLOC_Os03g12020-R | CTCGAGCTTCTCCTTGGCTG | RT-qPCR分析 |
qLOC_Os03g12030-F | CAAGCTCCGCAGCAACATCC | RT-qPCR分析 |
qLOC_Os03g12030-R | TGCGGACCACGTGCATCAGC | RT-qPCR分析 |
qLOC_Os03g12040-F | GCTGCCGTGACCACCACCTC | RT-qPCR分析 |
qLOC_Os03g12040-R | CATTAATGCATGTCAGTGG | RT-qPCR分析 |
qLOC_Os03g12050-F | CGCACATAATTTCGGAATCG | RT-qPCR分析 |
qLOC_Os03g12050-R | CACATCAAGGCAGGACCTTC | RT-qPCR分析 |
qLOC_Os03g12064-F | CCCATGTTTGTTGAAGAAAC | RT-qPCR分析 |
qLOC_Os03g12064-R | GTCCGATTCCTCGTAGGATG | RT-qPCR分析 |
qLOC_Os03g12080-F | TCCTGAGCGGCAGGGGTTAG | RT-qPCR分析 |
qLOC_Os03g12080-R | TAGAATCGAGGCGCTCCTCC | RT-qPCR分析 |
qLOC_Os03g12100-F | AGTCCTCTTTCCAACGGATC | RT-qPCR分析 |
qLOC_Os03g12100-R | TCCGTGGGTTGTTGATCTTGC | RT-qPCR分析 |
qLOC_Os03g12110-F | CAGGAGAGAGCTTTGCAGAG | RT-qPCR分析 |
qLOC_Os03g12110-R | ACAGGTCGTGCTCACCAGCC | RT-qPCR分析 |
qLOC_Os03g12120-F | TCTTGAGCGACCGGAATATG | RT-qPCR分析 |
qLOC_Os03g12120-R | AATACCCATTCATCAGGAGC | RT-qPCR分析 |
qLOC_Os03g12140-F | CGGACAACGTCGAGGCGCAC | RT-qPCR分析 |
qLOC_Os03g12140-R | ACGTCCCCGATCGCCCGGTG | RT-qPCR分析 |
qLOC_Os03g12150-F | GACCCTGACTTGGAGCCAAC | RT-qPCR分析 |
qLOC_Os03g12150-R | TTGACCACGGCATGAACCGG | RT-qPCR分析 |
qLOC_Os03g12160-F | GGATCCTTTGTTATTAGATC | RT-qPCR分析 |
qLOC_Os03g12160-R | TCTTCAGAGAACCACTTGAG | RT-qPCR分析 |
qLOC_Os03g12170-F | TCGTTGCGGTTGTACCTCTAC | RT-qPCR分析 |
qLOC_Os03g12170-R | GAGGTGGAGGCCTGTGGCTC | RT-qPCR分析 |
qLOC_Os03g12190-F | GACCCAAATACATTGGCGAGC | RT-qPCR分析 |
qLOC_Os03g12190-R | GTTGGCTACGGTTTGGATCGTCG | RT-qPCR分析 |
qLOC_Os03g12200-F | TGGCGAATCATCCGAAGTTAACG | RT-qPCR分析 |
qLOC_Os03g12200-R | CTGCCATAATATTTTTCAACGAG | RT-qPCR分析 |
qLOC_Os03g12210-F | TTGCATCCACGCGAGATACG | RT-qPCR分析 |
qLOC_Os03g12210-R | CCAGGTTGTCCTCGATCTCC | RT-qPCR分析 |
[1] | Guo T, Yu H, Qiu J, Li JY, Han B, Lin HX. Advances in rice genetics and breeding by molecular design in China. Science in China(Series C), 2019, 49(10): 1185-1212. |
郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学(生命科学), 2019, 49(10): 1185-1212. | |
[2] |
Liu X, Mou CL, Zhou CL, Chen ZJ, Jiang L, Wan JM. Research progress on cloning and regulation mechanism of rice grain shape genes. Chin J Rice Sci, 2018, 32(1): 1-11.
doi: 10.16819/j.1001-7216.2018.7016 |
刘喜, 牟昌铃, 周春雷, 程治军, 江玲, 万建民. 水稻粒形基因克隆和调控机制研究进展. 中国水稻科学, 2018, 32(1): 1-11.
doi: 10.16819/j.1001-7216.2018.7016 |
|
[3] | Yang LS, Bai YS, Zhang PJ, Xu CW, Hu XM, Wang WM, She DH, Chen GZ. Studies on the correlation between grain shape and grain quality in rice. Hybrid Rice, 2001, 16(4): 48-50, 54. |
杨联松, 白一松, 张培江, 许传万, 胡兴明, 王伍梅, 佘德红, 陈桂芝. 谷粒形状与稻米品质相关性研究. 杂交水稻, 2001, 16(4): 48-50, 54. | |
[4] |
Xing YZ, Zhang QF. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739 |
[5] | Yang WF, Zhan PL, Lin SJ, Gou YJ, Zhang GQ, Wang SK. Research progress of grain shape genetics in rice. Journal of South China Agricultural University, 2019, 40(5): 203-210. |
杨维丰, 詹鹏麟, 林少俊, 苟亚军, 张桂权, 王少奎. 水稻粒形的遗传研究进展. 华南农业大学学报, 2019, 40(5): 203-210. | |
[6] | Li YH, Li CX, Liu CY, He S, Xiang JY, Xie R. Location of the QTL of grain shape and grain weight of indica rice by Gang 46B/A232 RILs. Mol Plant Breed, 2018, 16(12): 3956-3966 (in Chinese with English abstract). |
李永洪, 李传旭, 刘成元, 何珊, 向箭宇, 谢戎. 利用岗46B/A232RILs群体定位籼稻粒形和粒重的QTL. 分子植物育种, 2018, 16(12): 3956-3966. | |
[7] | Hou J, Zhou H, Gao GJ, Li PB, He YQ, Zhang QL. Mapping QTL for rice grain shape and 1000-grain weight using F2 and F3 populations. Molecular Plant Breeding, 2019, 17(12): 3938-3944. |
侯俊, 周浩, 高冠军, 李平波, 何予卿, 张庆路. 利用F2和F3群体定位水稻粒形和千粒重QTL. 分子植物育种, 2019, 17(12): 3938-3944. | |
[8] |
Harberd N P. Shaping taste: the molecular discovery of rice genes improving grain size, shape and quality. J Genet Genomics, 2015, 42(11): 597-599.
doi: S1673-8527(15)00173-3 pmid: 26674377 |
[9] |
Zuo JR, Li JY. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet, 2014, 48: 99-118.
doi: 10.1146/annurev-genet-120213-092138 pmid: 25149369 |
[10] |
Huang RY, Jiang LR, Zheng JS, Wang TS, Wang HC, Wang YM, Hong ZL. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci, 2013, 18(4): 218-226.
doi: 10.1016/j.tplants.2012.11.001 pmid: 23218902 |
[11] |
Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112(6): 1164-1171.
doi: 10.1007/s00122-006-0218-1 pmid: 16453132 |
[12] |
Mao HL, Sun SY, Yao JL, Wang CR, Yu SB, Xu CG, Li XH, Zhang QF. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107(45): 19579-19584.
doi: 10.1073/pnas.1014419107 |
[13] |
Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang QF. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43(12): 1266-1269.
doi: 10.1038/ng.977 |
[14] |
Liu JF, Chen J, Zheng XM, Wu FQ, Lin QB, Heng YQ, Tian P, Cheng ZJ, Yu XW, Zhou KN, Zhang X, Guo XP, Wang JL, Wang HY, Wan JM. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017, 3(5): 17043.
doi: 10.1038/nplants.2017.43 |
[15] |
Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44(8): 950-954.
doi: 10.1038/ng.2327 |
[16] |
Wang SK, Li S, Liu Q, Wu K, Zhang JQ, Wang SS, Wang Y, Chen XB, Zhang Y, Gao CX, Wang F, Huang HX, Fu XD. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47(8): 949-954.
doi: 10.1038/ng.3352 |
[17] |
Liu Q, Han RX, Wu K, Zhang JQ, Ye YF, Wang SS, Chen JF, Pan YJ, Li Q, Xu XP, Zhou JW, Tao DY, Wu YJ, Fu XD. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018, 9(1): 852.
doi: 10.1038/s41467-018-03047-9 |
[18] |
Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX.The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1; 3. Cell Res, 2012, 22(12): 1666-1680.
doi: 10.1038/cr.2012.151 |
[19] |
Zhao DS, Li QF, Zhang CQ, Zhang C, Yang QQ, Pan LX, Ren XY, Lu J, Gu MH, Liu QQ. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun, 2018, 9(1): 1240.
doi: 10.1038/s41467-018-03616-y |
[20] | Sheng WT, Wu J, Bai B, Rao YS. Research progress on utilization of wild rice germplasm in rice high-yield breeding. J South Agric, 2017, 48(2): 222-230. |
盛文涛, 吴俊, 柏斌, 饶友生. 野生稻种质在水稻高产育种上的应用研究进展. 南方农业学报, 2017, 48(2): 222-230. | |
[21] | Jiang C, Wang JY, Li QH. The elite characters of wild rice and their utilization in rice breeding. Fujian Science and Technology of Rice and Wheat, 2003(3): 8-10. |
江川, 王金英, 李清华. 野生稻的优异特性及其在水稻育种中的利用. 福建稻麦科技, 2003(3): 8-10. | |
[22] | Jiang C, Zhu YB, Zhang D, Zheng PL, Wang JY. Existent problems in collection, preservation and regeneration of rice germplasm resources and their countermeasures. Acta Agric Jiangxi, 2018, 30(9): 16-20. |
江川, 朱业宝, 张丹, 郑苹立, 王金英. 稻种资源收集、保存和更新中存在的问题及对策. 江西农业学报, 2018, 30(09): 16-20. | |
[23] |
Liu G, Lu G, Zeng L, Wang GL. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2( t), are physically linked on rice chromosome 6. Molecular Genetics and Genomics, 2002, 267(4): 472-480.
pmid: 12111554 |
[24] | Xu J, Yan XW, Xiong HY, Zhu HL, Han YS. Cloning and expression analysis of OrNAC5 from Hainan common wild rice (Oryza rufipogon). Journal of Tropical Crops, 2014, 35(9): 1752-1756. |
徐靖, 严小微, 熊怀阳, 朱红林, 韩义胜. 海南普通野生稻OrNAC5的克隆和表达分析. 热带作物学报, 2014, 35(9): 1752-1756. | |
[25] | Xu J, Wang XN, Han YS, Xiong HY, Yan XW. Cloning and expression analysis of OrERF1 from Hainan common wild rice (Oryza rufipogon Griff). Life Sci Res, 2014, 18 (4): 299-303. |
徐靖, 王效宁, 韩义胜, 熊怀阳, 严小微. 海南普通野生稻OrERF1的克隆和表达分析. 生命科学研究, 2014, 18(4): 299-303. | |
[26] |
Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX, Dai JX, Zhang JS, Chen SY. A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet, 2003, 107(8): 1402-1409.
doi: 10.1007/s00122-003-1378-x |
[27] |
Tan LB, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40(11): 1360-1364.
doi: 10.1038/ng.197 pmid: 18820699 |
[28] |
Jiang LY, Ma X, Zhao SS, Tang YY, Liu FX, Gu P, Fu YC, Zhu ZF, Cai HW, Sun CQ, Tan LB. The APETALA2-Like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell, 2019, 31(1): 17-36.
doi: 10.1105/tpc.18.00304 |
[29] |
Zhang CQ, Zhu JH, Chen SJ, Fan XL, Li QF, Lu Y, Wang M, Yu HX, Yi CD, Tang SZ, Gu MH, Liu QQ. Wx(lv), the ancestral allele of rice Waxy gene. Mol Plant, 2019, 12(8): 1157-1166.
doi: 10.1016/j.molp.2019.05.011 |
[30] |
Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40(11): 1370-1374.
doi: 10.1038/ng.220 pmid: 18820698 |
[31] | Zhang GQ. The platform of breeding by design based on the SSSL library in rice. Hereditas (Beijing), 2019, 41(8): 754-760. |
张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019, 41(8): 754-760. | |
[32] |
Zhang GQ. Target chromosome-segment substitution: a way to breeding by design in rice. The Crop J, 2021, 9(3): 658-668.
doi: 10.1016/j.cj.2021.03.001 |
[33] |
Lin SJ, Liu ZP, Zhang K, Yang WF, Zhan PL, Tan QY, Gou YJ, Ma SP, Luan X, Huang CB, Xiao ZL, Liu YY, Zhu BH, Liang RQ, Zhou WQ, Zhu HT, Bu SH, Liu GF, Zhang GQ, Wang SK. GL9 from Oryza glumaepatula controls grain size and chalkiness in rice. The Crop J, 2023, 11(1): 198-207.
doi: 10.1016/j.cj.2022.06.006 |
[34] |
Zhan PL, Ma SP, Xiao ZL, Li FP, Wei X, Lin SJ, Wang XL, Ji Z, Fu Y, Pan JH, Zhou M, Liu Y, Chang ZY, Li L, Bu SH, Liu ZP, Zhu HT, Liu GF, Zhang GQ, Wang SK. Natural variations in grain length 10 (GL10) regulate rice grain size. J Genet Genomics, 2022, 49(5): 405-413.
doi: 10.1016/j.jgg.2022.01.008 |
[35] |
Zhan PL, Wei X, Xiao ZL, Wang XL, Ma SP, Lin SJ, Li FP, Bu SH, Liu ZP, Zhu HT, Liu GF, Zhang GF, Wang SQ. GW10, a member of P450 subfamily regulates grain size and grain number in rice. Theor Appl Genet, 2021, 134(12): 3941-3950.
doi: 10.1007/s00122-021-03939-3 |
[36] |
Andrews PB, Bishop M, Issar S, Nesmith D, Pfenning F, Xi HW. TPS: a theorem-proving system for classical type theory. J Autom Reasoning, 1996, 16(3): 321-353.
doi: 10.1007/BF00252180 |
[37] |
Paterson AH, Deverna JW, Lanini B, Tanksley SD. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990, 124(3): 735-742.
doi: 10.1093/genetics/124.3.735 pmid: 1968874 |
[38] |
Li N, Xu R, Li YH. Molecular networks of seed size control in plants. Annu Rev Plant Biol, 2019, 70: 435-463.
doi: 10.1146/annurev-arplant-050718-095851 pmid: 30795704 |
[39] |
Zou HY, Wenwen YH, Zang GC, Kang ZH, Zhang ZY, Huang JL, Wang GX. OsEXPB2, a β-expansin gene, is involved in rice root system architecture. Mol Breeding, 2015, 35(1): 203.
doi: 10.1007/s11032-015-0395-1 |
[40] | Choi BS, Kim YJ, Markkandan K, Koo YJ, Song JT, Seo HS.GW2 functions as an E3 Ubiquitin Ligase for rice Expansin-Like 1. Int J Mol Sci, 2018, 19(7): E1904. |
[41] |
Heang D, Sassa H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One, 2012, 7(2): e31325.
doi: 10.1371/journal.pone.0031325 |
[42] | Wang YX, Xiong GS, Hu J, Jiang L, Yu H, Xu J, Fang YX, Zeng LJ, Xu EB, Xu J, Ye WJ, Meng XB, Liu RF, Chen HQ, Jing YH, Wang YH, Zhu XD, Li JY, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47(8): 944-948. |
[43] |
Si LZ, Chen JY, Huang XH, Gong H, Luo JH, Hou QQ, Zhou TY, Lu TT, Zhu JJ, Shangguan YY, Chen EW, Gong CX, Zhao QJ, Jing YF, Zhao Y, Li Y, Cui LL, Fan DL, Lu YQ, Weng QJ, Wang YC, Zhan QL, Liu KY, Wei XH, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48(4): 447-456.
doi: 10.1038/ng.3518 |
[44] |
Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome, 2006, 49(5): 476-484.
doi: 10.1139/g06-005 pmid: 16767172 |
[45] |
Li N, Li YH. Signaling pathways of seed size control in plants. Curr Opin Plant Biol, 2016, 33: 23-32.
doi: S1369-5266(16)30083-8 pmid: 27294659 |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[3] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[4] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[5] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[6] | 赵三增, 孔丹宇, 辛培勇, 褚金芳, 万迎朗, 凌宏清, 刘毅. AtCPS V326M突变显著影响赤霉素合成[J]. 遗传, 2022, 44(3): 245-252. |
[7] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[8] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[9] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[10] | 闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[11] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[12] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[13] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[14] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[15] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: