[1] | Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature, 2003, 424(6951): 901-908. | [2] | Edwards D, Kerp H, Hass H. Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot, 1998, 49(Suppl. l): 255-278. | [3] | Pillitteri LJ, Dong J. Stomatal development in Arabidopsis. Arabidopsis Book, 2013, 11: e0162. | [4] | Dong J, Bergmann DC. Stomatal patterning and development. Curr Top Dev Biol, 2010, 91: 267-297. | [5] | MacAlister CA, Ohashi-Ito K, Bergmann DC. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature, 2007, 445(7127): 537-540. | [6] | Ohashi-Ito K, Bergmann DC. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell, 2006, 18(10): 2493-2505. | [7] | Pillitteri LJ, Bogenschutz NL, Torii KU. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Plant Cell Physiol, 2008, 49(6): 934-943. | [8] | Lampard GR, Bergmann DC. A shout-out to stomatal development: How the bHLH proteins SPEECHLESS, MUTE and FAMA regulate cell division and cell fate. Plant Signal Behav, 2007, 2(4): 290-292. | [9] | Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell, 2008, 20(7): 1775-1785. | [10] | Chen L, Guan LP, Qian PP, Xu F, Wu ZL, Wu YJ, He K, Gou XP, Li J, Hou SW. NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis. Development, 2016, 143(9): 1600-1611. | [11] | Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev, 2007, 21(14): 1720-1725. | [12] | Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol, 2009, 50(6): 1019-1031. | [13] | Nadeau JA, Sack FD. Control of stomatal distribution on the Arabidopsis leaf surface. Science, 2002, 296(5573): 1697-1700. | [14] | Shpak ED, McAbee JM, Pillitteri LJ, Torii KU. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science, 2005, 309(5732): 290-293. | [15] | Bergmann DC, Lukowitz W, Somerville CR. Stomatal development and pattern controlled by a MAPKK kinase. Science, 2004, 304(5676) |
[1] |
韦湘怡, 胡冬春, 高祖鹏, 冯从经. JAK/STAT信号通路及其对昆虫免疫的调控[J]. 遗传, 2023, 45(3): 229-236. |
[2] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[3] |
曲卉, 柳毅, 陈雅文, 汪晖. 环境因素所致印迹基因改变与子代器官发育[J]. 遗传, 2022, 44(2): 107-116. |
[4] |
张杨景晖, 常沛瑶, 杨紫淑, 薛宇航, 李雪奇, 张旸. 表观遗传修饰影响花青苷合成研究进展[J]. 遗传, 2022, 44(12): 1117-1127. |
[5] |
赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展[J]. 遗传, 2022, 44(10): 867-880. |
[6] |
何江平, 陈捷凯. 转座元件、表观遗传调控与细胞命运决定[J]. 遗传, 2021, 43(9): 822-834. |
[7] |
王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[8] |
袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[9] |
王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
[10] |
张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[11] |
谷晓勇, 刘扬, 刘利静. 植物激素水杨酸生物合成和信号转导研究进展[J]. 遗传, 2020, 42(9): 858-869. |
[12] |
张敏, 梁丽鸿, 鲁雅洁, 曹新. G蛋白偶联受体相关分选蛋白功能特征与相关疾病研究进展[J]. 遗传, 2020, 42(8): 713-724. |
[13] |
胡颖楚, 胡豪畅, 林少沂, 陈晓敏. DNA羟甲基化调控动脉粥样硬化的研究进展[J]. 遗传, 2020, 42(7): 632-640. |
[14] |
吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4): 333-346. |
[15] |
梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
|