[1] | Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature, 2003, 424(6951): 901-908. | [2] | Edwards D, Kerp H, Hass H. Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot, 1998, 49(Suppl. l): 255-278. | [3] | Pillitteri LJ, Dong J. Stomatal development in Arabidopsis. Arabidopsis Book, 2013, 11: e0162. | [4] | Dong J, Bergmann DC. Stomatal patterning and development. Curr Top Dev Biol, 2010, 91: 267-297. | [5] | MacAlister CA, Ohashi-Ito K, Bergmann DC. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature, 2007, 445(7127): 537-540. | [6] | Ohashi-Ito K, Bergmann DC. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell, 2006, 18(10): 2493-2505. | [7] | Pillitteri LJ, Bogenschutz NL, Torii KU. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Plant Cell Physiol, 2008, 49(6): 934-943. | [8] | Lampard GR, Bergmann DC. A shout-out to stomatal development: How the bHLH proteins SPEECHLESS, MUTE and FAMA regulate cell division and cell fate. Plant Signal Behav, 2007, 2(4): 290-292. | [9] | Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell, 2008, 20(7): 1775-1785. | [10] | Chen L, Guan LP, Qian PP, Xu F, Wu ZL, Wu YJ, He K, Gou XP, Li J, Hou SW. NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis. Development, 2016, 143(9): 1600-1611. | [11] | Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev, 2007, 21(14): 1720-1725. | [12] | Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol, 2009, 50(6): 1019-1031. | [13] | Nadeau JA, Sack FD. Control of stomatal distribution on the Arabidopsis leaf surface. Science, 2002, 296(5573): 1697-1700. | [14] | Shpak ED, McAbee JM, Pillitteri LJ, Torii KU. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science, 2005, 309(5732): 290-293. | [15] | Bergmann DC, Lukowitz W, Somerville CR. Stomatal development and pattern controlled by a MAPKK kinase. Science, 2004, 304(5676): 1494-1497. | [16] | Wang HC, Ngwenyama N, Liu YD, Walker JC, Zhang SQ. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell, 2007, 19(1): 63-73. | [17] | Matos JL, Lau OS, Hachez C, Cruz-Ramírez A, Scheres B, Bergmann DC. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. eLife, 2014, 3: e03271. | [18] | Simmons AR, Bergmann DC. Transcriptional control of cell fate in the stomatal lineage. Curr Opin Plant Biol, 2016, 29: 1-8. | [19] | Serna L. Stomatal development in Arabidopsis and grasses: differences and commonalities. Int J Dev Biol, 2011, 55(1): | [19] | 5-10. | [20] | Liu T, Ohashi-Ito K, Bergmann DC. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Development, 2009, 136(13): 2265-2276. | [21] | Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, Takahashi T. Characterization of the class IV homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiol, 2006, 141(4): 1363-1375. | [22] | Abe M, Katsumata H, Komeda Y, Takahashi T. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development, 2003, 130(4): 635-643. | [23] | Peterson KM, Shyu C, Burr CA, Horst RJ, Kanaoka MM, Omae M, Sato Y, Torii KU. Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis. Development, 2013, 140(9): 1924-1935. | [24] | Horst RJ, Fujita H, Lee JS, Rychel AL, Garrick JM, Kawaguchi M, Peterson KM, Torii KU. Molecular framework of a regulatory circuit initiating two-dimensional spatial patterning of stomatal lineage. PLoS Genet, 2015, 11(7): e1005374. | [25] | Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. Termination of asymmetric cell division and differentiation of stomata. Nature, 2007, 445(7127): 501-505. | [26] | Yamamuro C, Miki D, Zheng ZM, Ma J, Wang J, Yang ZB, Dong J, Zhu JK. Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nat Commun, 2014, 5: 4062. | [27] | Meng XZ, Chen X, Mang H, Liu CL, Yu X, Gao XQ, Torii KU, He P, Shan LB. Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning. Curr Biol, 2015, 25(18): 2361-2372. | [28] | Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I. Stomagen positively regulates stomatal density in Arabidopsis. Nature, 2010, 463(7278): 241-244. | [29] | Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, Kakimoto T, Sakagami Y. Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant Cell Physiol, 2010, 51(1): 1-8. | [30] | Lee JS, Hnilova M, Maes M, Lin YC, Putarjunan A, Han SK, Avila J, Torii KU. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature, 2015, 522(7557): 439-443. | [31] | Ohki S, Takeuchi M, Mori M. The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones. Nat Commun, 2011, 2: 512. | [32] | Raissig MT, Abrash E, Bettadapur A, Vogel JP, Bergmann DC. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. Proc Natl Acad Sci USA, 2016, 113(29): 8326-8331. | [33] | Zheng GD, Yang HQ. Characterization of rice OsYDA gene in regulating stomatal development. Plant Physiol J, 2011, 47(5): 468-474. | [33] | 郑国栋, 杨洪全. 水稻OsYDA基因调控气孔发育的功能分析. 植物生理学报, 2011, 47(5): 468-474. | [34] | Wei W. Cloning and analysis of expression characteristics of ZmSTOMAGEN gene in maize[D]. Nanjing: Guangxi University, 2013. | [34] | 韦葳. 玉米ZmSTOMAGEN基因的克隆及表达特性分析[学位论文]. 南宁: 广西大学, 2013. | [35] | Fan XW, Wei W, Liao QN, Li YZ. Bioinformatics analysis of stomagen orthologs between monocotyledons and dicotyledons. Genomics Appl Biol, 2013, 32(6): 752-760. | [35] | 樊宪伟, 韦葳, 廖权能, 李有志. 气孔蛋白同源物在单、双子叶植物中的生物信息学分析. 基因组学与应用生物学, 2013, 32(6): 752-760. | [36] | Torii KU. Stomatal differentiation: the beginning and the end. Curr Opin Plant Biol, 2015, 28: 16-22. | [37] | Dong J, Macalister CA, Bergmann DC. BASL controls asymmetric cell division in Arabidopsis. Cell, 2009, 137(7): 1320-1330. | [38] | Zhang Y, Wang PC, Shao WC, Zhu JK, Dong J. The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division. Dev Cell, 2015, 33(2): 136-149. | [39] | Pillitteri LJ, Peterson KM, Horst RJ, Torii KU. Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis. Plant Cell, 2011, 23(9): 3260-3275. | [40] | Qian PP, Han B, Forestier E, Hu ZH, Gao N, Lu WW, Schaller H, Li J, Hou SW. Sterols are required for cell-fate commitment and maintenance of the stomatal lineage in Arabidopsis. Plant J, 2013, 74(6): 1029-1044. | [41] | Cartwright HN, Humphries JA, Smith LG. PAN1: a receptor-like protein that promotes polarization of an asymmetric cell division in maize. Science, 2009, 323(5914): 649-651. | [42] | Humphries JA, Vejlupkova Z, Luo AD, Meeley RB, Sylvester AW, Fowler JE, Smith LG. ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize. Plant Cell, 2011, 23(6): 2273-2284. | [43] | Facette MR, Park Y, Sutimantanapi D, Luo AD, Cartwright HN, Yang B, Bennett EJ, Sylvester AW, Smith LG. The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize. Nat Plants, 2015, 1: 14024. | [44] | Lee E, Lucas JR, Goodrich J, Sack FD. Arabidopsis guard cell integrity involves the epigenetic stabilization of the FLP and FAMA transcription factor genes. Plant J, 2014, 78(4): 566-577. | [45] | Lee E, Lucas JR, Sack FD. Deep functional redundancy between FAMA and FOUR LIPS in stomatal development. Plant J, 2014, 78(4): 555-565. | [46] | Han SK, Torii KU. Lineage-specific stem cells, signals and asymmetries during stomatal development. Development, 2016, 143(8): 1259-1270. | [47] | Kim TW, Michniewicz M, Bergmann DC, Wang ZY. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 2012, 482(7385): 419-422. | [48] | Tanaka Y, Nose T, Jikumaru Y, Kamiya Y. ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves. Plant J, 2013, 74(3): 448-457. | [49] | Le J, Liu XG, Yang KZ, Chen XL, Zou JJ, Wang HZ, Wang M, Vanneste S, Morita M, Tasaka M, Ding ZJ, Friml J, Beeckman T, Sack F. Auxin transport and activity regulate stomatal patterning and development. Nat Commun, 2014, 5: 3090. | [50] | Kim TW, Guan SH, Sun Y, Deng ZP, Tang WQ, Shang JX, Sun Y, Burlingame AL, Wang ZY. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol, 2009, 11(10): 1254-1260. | [51] | He JX, Gendron JM, Yang YL, Li JM, Wang ZY. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA, 2002, 99(15): 10185-10190. | [52] | Calderón VLA, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao HB, Zheng N, Napier R, Kepinski S, Estelle M. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol, 2012, 8(5): 477-485. | [53] | Zhang JY, He SB, Li L, Yang HQ. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll. Proc Natl Acad Sci USA, 2014, 111(29): E3015-E3023. | [54] | Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61(1): 651-679. | [55] | Kim TH, B?hmer M, Hu HH, Nishimura N, Schroeder JI. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca 2+ signaling. Annu Rev Plant Biol, 2010, 61(1): 561-591. | [56] | Caldera HIU, De Costa WAJM, Woodward FI, Lake JA, Ranwala SMW. Effects of elevated carbon dioxide on stomatal characteristics and carbon isotope ratio of Arabidopsis thaliana ecotypes originating from an altitudinal gradient. Physiol Plant, 2017, 159(1): 74-92. | [57] | Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM. The HIC signalling pathway links CO2 perception to stomatal development. Nature, 2000, 408(6813): 713-716. | [58] | Engineer CB, Ghassemian M, Anderson JC, Peck SC, Hu HH, Schroeder JI. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature, 2014, 513(7517): 246-250. | [59] | Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol, 2009, 150(2): 1083-1092. | [60] | Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol, 2009, 19(3): 229-234. | [61] | Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell, 2009, 21(9): 2624-2641. | [62] | Hronková M, Wiesnerová D, ?imková M, Sk?pa P, Dewitte W, Vráblová M, Za?ímalová E, ?antr??ek J. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves. J Exp Bot, 2015, 66(15): 4621-4630. | [63] | Liang WH, Zhang F, Li MM. Effects of rice phytochrome A and B mutations on stomatal development and expression of OsAQP gene. Biotechnol Bull, 2012, (7): 77-82. | [63] | 梁卫红, 张帆, 李咪咪. 水稻光敏色素A和B的突变对气孔发育和OsAQP基因表达的影响. 生物技术通报, 2012, (7): 77-82. | [64] | Lau OS, Davies KA, Chang J, Adrian J, Rowe MH, Ballenger CE, Bergmann DC. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science, 2014, 345(6204): 1605-1609. |
|