[1] | Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256(5055): 385-387. | [2] | Agre P. The aquaporin water channels. Proc Am Thorac Soc, 2006, 3(1): 5-13. | [3] | Johanson U, Karlsson M, Johansson I, Gustavsson S, Sj?vall S, Fraysse L, Weig AR, Kjellbom P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol, 2001, 126(4): 1358-1369. | [4] | Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ. From genome to function: the Arabidopsis aquaporins. Genome Biol, 2001, 3: research0001.1. | [5] | Wallace IS, Choi WG, Roberts DM. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta, 2006, 1758(8): 1165-1175. | [6] | Kammerloher W, Fischer U, Piechottka GP, Sch?ffner AR. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J, 1994, 6(2): 187-199. | [7] | Johansson I, Larsson C, Ek B, Kjellbom P. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca 2+ and apoplastic water potential. Plant Cell, 1996, 8(7): 1181-1191. | [8] | Kruse E, Uehlein N, Kaldenhoff R. The aquaporins. Genome Biol, 2006, 7: 206. | [9] | Bienert GP, Cavez D, Besserer A, Berny MC, Gilis D, Rooman M, Chaumont F. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers. Biochem J, 2012, 445(1): 101-111. | [10] | daSilva LLP, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F. Endoplasmic reticulum export sites and golgi bodies behave as single mobile secretory units in plant cells. Plant Cell, 2004, 16(7): 1753-1771. | [11] | Hanton SL, Matheson LA, Chatre L, Brandizzi F. Dynamic organization of COPII coat proteins at endoplasmic reticulum export sites in plant cells. Plant J, 2009, 57(6): 963-974. | [12] | Hachez C, Besserer A, Chevalier AS, Chaumont F. Insights into plant plasma membrane aquaporin trafficking. Trends Plant Sci, 2013, 18(6): 344-352. | [13] | Miller EA, Beilharz TH, Malkus PN, Lee MCS, Hamamoto S, Orci L, Schekman R. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell, 2003, 114(4): 497-509. | [14] | Zelazny E, Miecielica U, Borst JW, Hemminga MA, Chaumont F. An N-terminal diacidic motif is required for the trafficking of maize aquaporins ZmPIP2;4 and ZMPIP2;5 to the plasma membrane. Plant J, |
[1] |
王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[2] |
周聪, 周强伟, 成盛, 李国亮. CTCF在介导三维基因组形成及调控基因表达中的研究进展[J]. 遗传, 2021, 43(9): 816-821. |
[3] |
徐海冬, 宁博林, 牟芳, 李辉, 王宁. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15. |
[4] |
宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[5] |
施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[6] |
路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[7] |
翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[8] |
马建辉, 仝豆豆, 张文利, 张黛静, 邵云, 杨云, 姜丽娜. 乌拉尔图小麦NAC转录因子的筛选与分析[J]. 遗传, 2016, 38(3): 243-253. |
[9] |
周菲, 路史展, 高亮, 张娟娟, 林拥军. 植物质体基因工程:新的优化策略及应用[J]. 遗传, 2015, 37(8): 777-792. |
[10] |
黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[11] |
李月, 刘晓东, 董永梅, 谢宗铭, 陈受宜. 棉花Trihelix转录因子GhGT29基因的克隆及功能分析[J]. 遗传, 2015, 37(12): 1218-1227. |
[12] |
高学焕, 付凤玲, 牟巍, 周树峰, 张素芝, 李晚忱. 玉米钼辅助因子硫酸化酶基因启动子的克隆与功能验证[J]. 遗传, 2014, 36(6): 584-591. |
[13] |
施子晗, 李泽琴, 张根发. 植物组蛋白赖氨酸化修饰参与基因表达调控的机理[J]. 遗传, 2014, 36(3): 208-219. |
[14] |
张韬 杨足君. 植物基因组DNase I超敏感位点的研究进展[J]. 遗传, 2013, 35(7): 867-874. |
[15] |
夏天,肖丙秀,郭俊明. 长链非编码RNA的作用机制及其研究方法[J]. 遗传, 2013, 35(3): 269-280. |
|