[1] | Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol, 2012, 160( 6): 2-14. | [2] | Vierstra RD. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci, 2003, 8( 3): 135-142. | [3] | Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555-590. | [4] | Lopez-Molina L, Mongrand S, Chua NH. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA, 2001, 98( 8): 4782-4787. | [5] | Isono E, Nagel MK. Deubiquitylating enzymes and their emerging role in plant biology. Front Plant Sci, 2014, 5: 56. | [6] | Qiu JZ, Sheedlo MJ, Yu KW, Tan YH, Nakayasu ES, Das C, Liu XY, Luo ZQ. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature, 2016, 533( 7601): 120-124. | [7] | Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol, 2009, 10( 6): 385-397. | [8] | Yan N, Doelling JH, Falbel TG, Durski AM, Vierstra RD. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol, 2000, 124( 4): 1828-1843. | [9] | Hua ZH, Vierstra RD. The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol, 2011, 62: 299-334. | [10] | Michelle C, Vourc'h P, Mignon L, Andres CR. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J Mol Evol, 2009, 68( 6): 616-628. | [11] | Callis J. The ubiquitination machinery of the ubiquitin system. Arabidopsis Book, 2014, 12: e0174. | [12] | Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F. Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci, 2001, 6( 10): 463-470. | [13] | Komander D, Rape M. The ubiquitin code. Annu Rev Biochem, 2012, 81( 1): 203-229. | [14] | Hatfield PM, Gosink MM, Carpenter TB, Vierstra RD. The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J, 1997, 11( 2): 213-226. | [15] | Jin JP, Li X, Gygi SP, Harper JW. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature, 2007, 447( 7148): 1135-1138. | [16] | Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J. Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol, 2005, 139( 4): 1597-1611. | [17] | Criqui MC, de Almeida Engler J, Camasses A, Capron A, Parmentier Y, Inzé D, Genschik P. Molecular characterization of plant ubiquitin-conjugating enzymes belonging to the UbcP4/E2-C/UBCx/UbcH10 gene family. Plant Physiol, 2002, 130( 3): 1230-1240. | [18] | Eletr ZM, Huang DT, Duda DM, Schulman BA, Kuhlman B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat Struct Mol Biol, 2005, 12( 10): 933-934. | [19] | Groll M, Ditzel L, L?we J, Stock D, Bochtler M, Bartunik HD, Huber R. Structure of 20S proteasome from yeast at 2.4? resolution. Nature, 1997, 386( 6624): 463-471. | [20] | Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem, 1999, 68: 1015-1068. | [21] | Yang PZ, Fu HY, Walker J, Papa CM, Smalle J, Ju YM, Vierstra RD. Purification of the Arabidopsis 26 S proteasome-Biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem, 2004, 279( 8): 6401-6413. | [22] | Tian MM, Xie Q. Non-26S proteasome proteolytic role of ubiquitin in plant endocytosis and endosomal trafficking. J Integr Plant Biol, 2013, 55( 1): 54-63. | [23] | Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science, 2007, 315( 5809): 201-205. | [24] | Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 2004, 1695( 1- 3): 55-72. | [25] | Lauwers E, Jacob C, André B. K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J Cell Biol, 2009, 185( 3): 493-502. | [26] | Schuh AL, Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol, 2014, 49( 3): 242-261. | [27] | Xiong LM, Lee H, Ishitani M, Zhu JK. Regulation of osmotic stress-responsive gene expression by the LOS6/ ABA1 locus in Arabidopsis. J Biol Chem, 2002, 277( 10): 8588-8596. | [28] | Schwartz SH, Qin XQ, Zeevaart JAD. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol, 2003, 131( 4): 1591-1601. | [29] | North HM, De Almeida A, Boutin JP, Frey A, To A, Botran L, Sotta B, Marion-Poll A. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J, 2007, 50( 5): 810-824. | [30] | Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koornneef M, Kamiya Y, Koshiba T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA, 2000, 97( 23): 12908-12913. | [31] | Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell, 2002, 14( 11): 2723-2743. | [32] | Xiong LM, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 2001, 13( 9): 2063-2083. | [33] | Barrero JM, Rodríguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ, 2006, 29( 10): 2000-2008. | [34] | Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, Kim DH, Kim SY, Seo M, Bressan RA, Yun DJ, Hwang I. A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell, 2012, 24( 5): 2184-2199. | [35] | Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324( 5930): 1064-1068. | [36] | Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR. Abscisic acid inhibits Type 2C Protein Phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324( 5930): 1068-1071. | [37] | Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KAS, Romeis T, Hedrich R. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA, 2009, 106( 50): 21425-21430. | [38] | Lee SC, Lan WZ, Buchanan BB, Luan S. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA, 2009, 106( 50): 21419-21424. | [39] | Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto DB, Uozumi N. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J, 2009, 424( 3): 439-448. | [40] | Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal, 2013, 6( 270): rs8. | [41] | Wang PC, Xue L, Batelli G, Lee S, Hou YJ, Van Oosten MJ, Zhang HM, Tao WA, Zhu JK. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci USA, 2013, 110( 27): 11205-11210. | [42] | Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR. Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol, 2007, 17( 16): 1396-1402. | [43] | Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol, 2009, 50( 7): 1345-1363 | [44] | Lee SC, Lim CW, Lan WZ, He K, Luan S. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels. Mol Plant, 2013, 6( 2): 528-538. | [45] | Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J, 2009, 59( 1): 39-51. | [46] | Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J, 2006, 47( 3): 343-355. | [47] | Bueso E, Rodriguez L, Lorenzo-Orts L, Gonzalez-Guzman M, Sayas E, Mu?oz-Bertomeu J, Iba?ez C, Serrano R, Rodriguez PL. The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J, 2014, 80( 6): 1057-1071. | [48] | Irigoyen ML, Iniesto E, Rodriguez L, Puga MI, Yanagawa Y, Pick E, Strickland E, Paz-Ares J, Wei N, De Jaeger G, Rodriguez PL, Deng XW, Rubio V. Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell, 2014, 26( 2): 712-728. | [49] | Li Y, Zhang L, Li DK, Liu ZB, Wang JM, Li XF, Yang Y. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation. Plant Cell Environ, 2016, 39( 3): 571-582. | [50] | Lin QB, Wu FQ, Sheng PK, Zhang Z, Zhang X, Guo XP, Wang JL, Cheng ZJ, Wang J, Wang HY, Wan JM. The SnRK2-APC/C TE regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways. Nat Commun, 2015, 6: 7981. | [51] | Kong LY, Cheng JK, Zhu YJ, Ding YL, Meng JJ, Chen ZZ, Xie Q, Guo Y, Li JG, Yang SH, Gong ZZ. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat Commun, 2015, 6: 8630. | [52] | Sun XW, Feng PQ, Xu XM, Guo HL, Ma JF, Chi W, Lin RC, Lu CM, Zhang LX. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun, 2011, 2: 477. | [53] | Zhang YY, Yang CW, Li Y, Zheng NY, Chen H, Zhao QZ, Gao T, Guo HS, Xie Q. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007, 19( 6): 1912-1929. | [54] | Zhang HW, Cui F, Wu YR, Lou LJ, Liu LJ, Tian MM, Ning YS, Shu K, Tang SY, Xie Q. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell, 2015, 27( 1): 214-227. | [55] | Naponelli V, Noiriel A, Ziemak MJ, Beverley SM, Lye LF, Plume AM, Botella JR, Loizeau K, Ravanel S, Rébeillé F, de Crécy-Lagard V, Hanson AD. Phylogenomic and functional analysis of pterin-4a-carbinolamine dehydratase family (COG2154) proteins in plants and microorganisms. Plant Physiol, 2008, 146( 4): 1515-1527. | [56] | Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ, 2015, 38( 1): 35-49. | [57] | Zhang YY, Li Y, Gao T, Zhu H, Wang DJ, Zhang HW, Ning YS, Liu LJ, Wu YR, Chu CC, Guo HS, Xie Q. Arabidopsis SDIR1 enhances drought tolerance in crop plants. Biosci Biotechnol Biochem, 2008, 72( 8): 2251-2254. | [58] | Gao T, Wu YR, Zhang YY, Liu LJ, Ning YS, Wang DJ, Tong HN, Chen SY, Chu CC, Xie Q. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol, 2011, 76( 1-2): 145-156. | [59] | Xia ZL, Liu QJ, Wu JY, Ding JQ. ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA- dependent manner in maize. Gene, 2012, 495( 2): 146-153. | [60] | Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell, 2006, 18( 12): 3415-3428. | [61] | Liu HX, Stone SL. Cytoplasmic degradation of the Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J Biol Chem, 2013, 288( 28): 20267-20279. | [62] | Lyzenga WJ, Liu HX, Schofield A, Muise-Hennessey A, Stone SL. Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. J Exp Bot, 2013, 64( 10): 2779-2791. | [63] | Gu YN, Innes RW. The KEEP ON GOING protein of arabidopsis recruits the ENHANCED DISEASE RESISTANCE1 protein to trans-golgi network/early endosome vesicles. Plant Physiol, 2011, 155( 4): 1827-1838. | [64] | Chen Q, Zhong YW, Wu YR, Liu LJ, Wang PF, Liu RJ, Cui F, Li QL, Yang XY, Fang SY, Xie Q. HRD1-mediated ERAD tuning of ER-bound E2 is conserved between plants and mammals. Nat Plants, 2016, 2: 16094. | [65] | Cui F, Liu LJ, Zhao QZ, Zhan ZH, Li QL, Lin BY, Wu YR, Tang SY, Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid- mediated salt stress tolerance. Plant Cell, 2012, 24( 1): 233-244. | [66] | Chen YT, Liu HX, Stone S, Callis J. ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J, 2013, 75( 6): 965-976. | [67] | Zhao HY, Zhang HM, Cui P, Ding F, Wang GC, Li RJ, Jenks MA, Lü SY, Xiong LM. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in Arabidopsis. Plant Physiol, 2014, 165( 3): 1255-1268. | [68] | Swanson R, Locher M, Hochstrasser M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Gene Dev, 2001, 15( 20): 2660-2674. | [69] | Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci, 2010, 15( 7): 395-401. | [70] | Yu FF, Wu YR, Xie Q. Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci, 2015, 20( 9): 569-575. | [71] | Liu HX, Stone SL. Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell, 2010, 22( 8): 2630-2641. | [72] | Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai MQ, Li JG, Byun MO, Deng XW. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell, 2010, 22( 6): 1716-1732. | [73] | Seo KI, Lee JH, Nezames CD, Zhong SW, Song E, Byun MO, Deng XW. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell, 2014, 26( 2): 695-711. | [74] | Kurup S, Jones HD, Holdsworth MJ. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J, 2000, 21( 2): 143-155. | [75] | Zhang XR, Garreton V, Chua NH. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Gene Dev, 2005, 19( 13): 1532-1543. | [76] | Lopez-Molina L, Mongrand B, McLachlin DT, Chait BT, Chua NH. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J, 2002, 32( 3): 317-328. | [77] | Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR. Interactions between the s-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol, 2008, 147( 4): 2084-2095. | [78] | Chung E, Cho CW, So HA, Kang JS, Chung YS, Lee JH. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PLoS One, 2013, 8( 6): e66056. | [79] | Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M. Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J, 2002, 30( 3): 373-383. | [80] | Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci, 2007, 12( 8): 343-351. | [81] | Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene, 1993, 129( 2): 175-182. | [82] | Kim JH, Kim WT. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol, 2013, 162( 3): 1733-1749. | [83] | Glickman MH. Getting in and out of the proteasome. Semin Cell Dev Biol, 2000, 11( 3): 149-158. | [84] | Smalle J, Kurepa J, Yang PZ, Emborg TJ, Babiychuk E, Kushnir S, Vierstra RD. The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell, 2003, 15( 4): 965-980. | [85] | Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, Kay SA, Kunz HH, Schumacher K, DeLong A, Yates JR, Schroeder JI. Identification of Open Stomata1-interacting proteins reveals interactions with Sucrose Non-fermenting1- Related protein Kinases2 and with Type 2A Protein Phosphatases that function in abscisic acid responses. Plant Physiol, 2015, 169( 1): 760-779. | [86] | Zhou HW, Nussbaumer C, Chao Y, DeLong A. Disparate roles for the regulatory A subunit isoforms in Arabidopsis protein phosphatase 2A. Plant Cell, 2004, 16( 3): 709-722. | [87] | Luo JH, Shen GX, Yan JQ, He CX, Zhang H. AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. Plant J, 2006, 46( 4): 649-657. | [88] | Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI. Disruption of a guard cell- expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell, 2002, 14( 11): 2849-2861. | [89] | Belda-Palazon B, Rodriguez L, Fernandez MA, Castillo MC, Anderson EA, Gao CJ, González-Guzmán M, Peirats- Llobet M, Zhao Q, De Winne N, Gevaert K, De Jaeger G, Jiang LW, Leon J, Mullen RT, Rodriguez PL. FYVE1/ FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell, 2017, 29( 5): 2291, doi: 10.1105/tpc.16.00178. | [90] | Yu FF, Lou LJ, Tian MM, Li QL, Ding YL, Cao XQ, Wu YR, Belda-Palazon B, Rodriguez PL, Yang SH, Xie Q. ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol Plant, 2016, 9( 12): 1570-1582. | [91] | Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, 14( Suppl 1): S15-S45. | [92] | Pauwels L, Ritter A, Goossens J, Durand AN, Liu HX, Gu YN, Geerinck J, Boter M, Vanden Bossche R, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Solano R, Stone S, Innes R W, Callis J, Goossens A. The RING E3 ligase KEEP ON GOING modulates JASMONATE ZIM-DOMAIN12 stability. Plant Physiol, 2015, 169( 2): 1405-1417. | [93] | Dai MQ, Xue Q, Mccray T, Margavage K, Chen F, Lee JH, Nezames CD, Guo LQ, Terzaghi W, Wan JM, Deng XW, Wang HY. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell, 2013, 25( 2): 517-534. | [94] | Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev, 2003, 17( 3): 410-418. | [95] | Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Nat Acad Sci USA, 2009, 106( 13): 5418-5423. | [96] | Liu HX, Stone SL. Regulation of ABI5 turnover by reversible post-translational modifications. Plant Signal Behav, 2014, 9( 1): e27577. | [97] | Uhart M, Bustos DM. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation. PLoS One, 2013, 8( 2): e55703. | [98] | Dutilleul C, Ribeiro I, Blanc N, Nezames CD, Deng XW, Zglobicki P, Palacio Barrera AM, Atehortùa L, Courtois M, Labas V, Giglioli-Guivarc'h N, Ducos E. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. Plant Cell Environ, 2016, 39( 1): 185-198. |
|