[1] | Oulion S , Bertrand S , Escriva H. Evolution of the FGF gene family. Int J Evol Biol, 2012, 2012: 289147. | [2] | Kharitonenkov A , Adams AC. Inventing new medicines: the FGF21 story. Mol Metab, 2014, 3( 3): 221- 229. | [3] | Johnson CL , Mehmood R , Laing SW , Stepniak CV , Kharitonenkov A , Pin CL. Silencing of theFibroblast growth factor 21 gene is an underlying cause of acinar cell injury in mice lacking MIST1. Am J Physiol Endocrinol Metab, 2014, 306( 8): E916- E928. | [4] | Chu AY , Workalemahu T , Paynter NP , Rose LM , Giulianini F , Tanaka T , Ngwa JS , CHARGE Nutrition Working Group, Qi QB, Curhan GC, Rimm EB, Hunter DJ, Pasquale LR, Ridker PM, Hu FB, Chasman DI, Qi L, DietGen Consortium. Novel locus includingFGF21 is associated with dietary macronutrient intake. Hum Mol Genet, 2013, 22( 9): 1895- 1902. | [5] | Nishimura T , Nakatake Y , Konishi M , Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta, 2000, 1492( 1): 203- 206. | [6] | Lee P , Brychta RJ , Linderman J , Smith S , Chen KY , Celi FS. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab, 2013, 98( 1): E98- E102. | [7] | Adams AC , Coskun T , Cheng CC , O’Farrell LS, Dubois SL, Kharitonenkov A. Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol Metab, 2013, 2( 3): 205- 214. | [8] | Li ZJ , Choi HI , Choi DK , Sohn KC , Im M , Seo YJ , Lee YH , Lee JH , Lee Y. Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth. Dermatol Surg, 2012, 38( 7 Pt 1): 1040- 1046. | [9] | Yousaf R , Meng QH , Hufnagel RB , Xia Y , Puligilla C , Ahmed ZM , Riazuddin S. MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells. Dis Model Mech, 2015, 8( 12): 1543- 1553. | [10] | Park S , Erdogan S , Hwang D , Hwang S , Han EH , Lim YH. Bee venom promotes hair growth in association with inhibiting 5α-reductase expression. Biol Pharm Bull, 2016, 39( 6): 1060- 1068. | [11] | Wang XL , Cai B , Zhou JK , Zhu HJ , Niu YY , Ma BH , Yu HH , Lei AM , Yan HL , Shen QY , Shi L , Zhao XE , Hua JL , Huang XX , Qu L , Chen YL. Disruption ofFGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One, 2016, 11( 10): e0164640. | [12] | Dong Y , Xie M , Jiang Y , Xiao NQ , Du XY , Zhang WG , Tosser-Klopp G , Wang JH , Yang S , Liang J , Chen WB , Chen J , Zeng P , Hou Y , Bian C , Pan SK , Li YX , Liu X , W |
[1] |
王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[2] |
刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[3] |
张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[4] |
张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[5] |
刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[6] |
韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[7] |
杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[8] |
彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[9] |
王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[10] |
李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[11] |
陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[12] |
刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443. |
[13] |
鲍莉雯, 周一叶, 曾凡一. 基于CRISPR/Cas9技术的β-地中海贫血和血友病基因治疗研究进展[J]. 遗传, 2020, 42(10): 949-964. |
[14] |
林珉婷, 赖璐璐, 赵淼, 林必玮, 姚香平. 利用CRISPR/Cas9 AAV系统构建纹状体Slc20a2基因敲除小鼠模型[J]. 遗传, 2020, 42(10): 1017-1027. |
[15] |
刘沛峰, 吴强. CRISPR/Cas9基因编辑在三维基因组研究中的应用[J]. 遗传, 2020, 42(1): 18-31. |
|