[1] | Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell, 2005, 123(6): 1133-1146. | [2] | Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev Biol, 2016, 410(1): 1-13. | [3] | Aulehla A, Pourquié O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol, 2010, 2(2): a000869. | [4] | Jostes B, Walther C, Gruss P. The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev, 1990, 33(1): 27-37. | [5] | Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P. Pax3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J, 1991, 10(5): 1135-1147. | [6] | Gros J, Manceau M, Thomé V, Marcelle C. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature, 2005, 435(7044): 954-958. | [7] | Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature, 2005, 435(7044): 948-953. | [8] | Münsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev, 1995, 9(23): 2911-2922. | [9] | Pourquié O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, Bréant C, Francis-West P, Brickell P, Tessier-Lavigne M, Le Douarin NM. Lateral and axial signals involved in avian somite patterning: A role for BMP4. Cell, 1996, 84(3): 461-471. | [10] | Lassar AB, Buskin JN, Lockshon D, Davis RL, Apone S, Hauschka SD, Weintraub H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell, 1989, 58(5): 823-831. | [11] | Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989, 56(5): 777-783. | [12] | Buckingham M. Making muscle in mammals. Trends Genet, 1992, 8(4): 144-149. | [13] | Rudnicki MA, Braun T, Hinuma S, Jaenisch R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell, 1992, 71(3): 383-390. | [14] | Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993, 364(6437): 501-506. | [15] | Chen JF, Tao YZ, Li J, Deng ZL, Yan Z, Xiao X, Wang DZ. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol, 2010, 190(5): 867-879. | [16] | Hirai H, Verma M, Watanabe S, Tastad C, Asakura Y, Asakura A. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J Cell Biol, 2010, 191(2): 347-365. | [17] | Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol, 2011, 31(1): 203-214. | [18] | Goljanek-Whysall K, Sweetman D, Abu-Elmagd M, Chapnik E, Dalmay T, Hornstein E, Münsterberg A. MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc Natl Acad Sci USA, 2011, 108(29): 11936-11941. | [19] | Gagan J, Dey BK, Layer R, Yan Z, Dutta A. Notch3 and Mef2c proteins are mutually antagonistic via Mkp1 protein and miR-1/206 microRNAs in differentiating myoblasts. J Biol Chem, 2012, 287(48): 40360-40370. | [20] | Huang QK, Qiao HY, Fu MH, Li G, Li WB, Chen Z, Wei J, Liang BS. MiR-206 attenuates denervation-induced skeletal muscle atrophy in rats through regulation of satellite cell differentiation via TGF-β1, Smad3, and HDAC4 Signaling. Med Sci Monit, 2016, 22: 1161-1170. | [21] | Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA, 2009, 106(32): 13383-13387. | [22] | Huang ZQ, Chen XL, Yu B, He J, Chen DW. MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem Biophys Res Commun, 2012, 423(2): 265-269. | [23] | McFarlane C, Vajjala A, Arigela H, Lokireddy S, Ge XJ, Bonala S, Manickam R, Kambadur R, Sharma M. Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS One, 2014, 9(1): e87687. | [24] | Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR- 675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev, 2014, 28(5): 491-501. | [25] | Goljanek-Whysall K, Mok GF, Fahad Alrefaei A, Kennerley N, Wheeler GN, Munsterberg A. myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis. Development, 2014, 141(17): 3378-3387. | [26] | Daubas P, Crist CG, Bajard L, Relaix F, Pecnard E, Rocancourt D, Buckingham M. The regulatory mechanisms that underlie inappropriate transcription of the myogenic determination gene Myf5 in the central nervous system. Dev Biol, 2009, 327(1): 71-82. | [27] | Crist CG, Montarras D, Buckingham M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell, 2012, 11(1): 118-126. | [28] | Sato T, Yamamoto T, Sehara-Fujisawa A. miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat Commun, 2014, 5: 4597. | [29] | Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature, 2012, 482(7386): 524-528. | [30] | Sun YT, Ge YJ, Drnevich J, Zhao Y, Band M, Chen J. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol, 2010, 189(7): 1157-1169. | [31] | Liu N, Williams AH, Maxeiner JM, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest, 2012, 122(6): 2054-2065. | [32] | Liu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu YR, Voelker KA, Grange RW, Richardson JA, Bassel-Duby R, Olson EN. Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J Clin Invest, 2011, 121(8): 3258-3268. | [33] | Zhang D, Li XH, Chen CC, Li YY, Zhao L, Jing YY, Liu W, Wang XY, Zhang Y, Xia HF, Chang YN, Gao X, Yan J, Ying H. Attenuation of p38-mediated miR-1/133 expression facilitates myoblast proliferation during the early stage of muscle regeneration. PLoS One, 2012, 7(7): e41478. | [34] | Feng Y, Niu LL, Wei W, Zhang WY, Li XY, Cao JH, Zhao SH. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis, 2013, 4(11): e934. | [35] | Huang MB, Xu H, Xie SJ, Zhou H, Qu LH. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One, 2011, 6(12): e29173. | [36] | Das S, Kohr M, Dunkerly-Eyring B, Lee DI, Bedja D, Kent OA, Leung AK, Henao-Mejia J, Flavell RA, Steenbergen C. Divergent effects of miR-181 family members on myocardial function through protective cytosolic and detrimental mitochondrial microRNA targets. J Am Heart Assoc, 2017, 6(3): e004694. | [37] | Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si- Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol, 2006, 8(3): 278-284. | [38] | Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci, 2013, 126(12): 2678-2691. | [39] | Shi L, Zhou B, Li PH, Schinckel AP, Liang TT, Wang H, Li HZ, Fu LL, Chu QP, Huang RH. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development. Cell Signal, 2015, 27(9): 1895-1904. | [40] | Chen XL, Huang ZQ, Chen DW, Yang T, Liu GM. Role of microRNA-27a in myoblast differentiation. Cell Biol Int, 2014, 38(2): 266-271. | [41] | Sun Q, Zhang Y, Yang G, Chen XP, Zhang Y, Cao GA, Cao GJ, Wang J, Sun YX, Zhang P, Fan M, Shao NM, Yang X. Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res, 2008, 36(8): 2690-2699. | [42] | Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell, 2009, 36(1): 61-74. | [43] | Gagan J, Dey BK, Layer R, Yan Z, Dutta A. MicroRNA- 378 targets the myogenic repressor MyoR during myoblast differentiation. J Biol Chem, 2011, 286(22): 19431-19438. | [44] | Khanna N, Ge YJ, Chen J. MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells. PLoS One, 2014, 9(6): e100657. | [45] | Zhang J, Ying ZZ, Tang ZL, Long LQ, Li K. MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem, 2012, 287(25): 21093-21101. | [46] | Wang HT, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC. NF-κB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 2008, 14(5): 369-381. | [47] | Wei W, He HB, Zhang WY, Zhang HX, Bai JB, Liu HZ, Cao JH, Chang KC, Li XY, Zhao SH. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis, 2013, 4(6): e668. | [48] | Qiu H, Liu N, Luo L, Zhong J, Tang Z, Kang K, Qu J, Peng W, Liu L, Li L, Gou D. MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis. Cell Death Differ, 2016, 23(10): 1658-1669. | [49] | Wei W, Zhang WY, Bai JB, Zhang HX, Zhao YY, Li XY, Zhao SH. The NF-κB-modulated microRNAs miR-195 and miR-497 inhibit myoblast proliferation by targeting Igf1r, Insr and cyclin genes. J Cell Sci, 2016, 129(1): 39-50. | [50] | Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q, Zhang X. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis, 2014, 5(7): e1347. | [51] | Wong CF, Tellam RL. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem, 2008, 283(15): 9836-9843. | [52] | Dey BK, Gagan J, Yan Z, Dutta A. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev, 2012, 26(19): 2180-2191. | [53] | Ma ML, Wang XM, Chen XC, Cai R, Chen FF, Dong WZ, Yang GS, Pang WJ. MicroRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/AKT/mTOR signaling pathway. RNA Biol, 2017, 14(3): 347-360. | [54] | Wang M, Liu CC, Su Y, Zhang K, Zhang YY, Chen M, Ge MX, Gu LJ, Lu TY, Li N, Yu ZQ, Meng QY. miRNA-34c inhibits myoblasts proliferation by targeting. YY1. Cell Cycle, 2017, 16(18): 1661-1672. | [55] | Gan ZJ, Rumsey J, Hazen BC, Lai L, Leone TC, Vega RB, Xie H, Conley KE, Auwerx J, Smith SR, Olson EN, Kralli A, Kelly DP. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. J Clin Invest, 2013, 123(6): 2564-2575. | [56] | Grueter CE, Van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi XX, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell, 2012, 149(3): 671-683. | [57] | Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng ZL, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest, 2009, 119(9): 2772-2786. | [58] | Zhang XR, Zuo XX, Yang B, Li ZR, Xue YC, Zhou Y, Huang J, Zhao XL, Zhou J, Yan Y, Zhang HQ, Guo PP, Sun H, Guo L, Zhang Y, Fu XD. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell, 2014, 158(3): 607-619. | [59] | Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE, Kaplan BB. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci, 2008, 28(47): 12581-12590. | [60] | Jing L, Hou Y, Wu H, Miao YX, Li XY, Cao JH, Brameld JM, Parr T, Zhao SH. Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs. Sci Rep, 2015, 5: 11953. | [61] | Wang YC, Li YY, Wang XY, Zhang D, Zhang HH, Wu Q, He YQ, Wang JY, Zhang L, Xia HF, Yan J, Li XH, Ying H. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia, 2013, 56(10): 2275-2285. | [62] | Sun J, Sonstegard TS, Li C, Huang Y, Li Z, Lan X, Zhang C, Lei C, Zhao X, Chen H. Altered microRNA expression in bovine skeletal muscle with age. Anim Genet, 2015, 46(3): 227-238. | [63] | Wang YM, Ding XB, Dai Y, Liu XF, Guo H, Zhang Y. Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation. Mol Cell Biochem, 2015, 404(1-2): 113-122. | [64] | Zhang WR, Zhang HN, Wang YM, Dai Y, Liu XF, Li X, Ding XB, Guo H. miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targetingIGFBP5. In Vitro Cell Dev Biol Anim, 2017, 53(3): 265-271. | [65] | Dai Y, Zhang WR, Wang YM, Liu XF, Li X, Ding XB, Gou H. microRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1. Mol Cell Biochem, 2016, 414(1-2): 37-46. | [66] | Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Gou H. The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim, 2016, 52(1): 27-34. | [67] | Wang Q, Qi RL, Wang J, Huang WM, Wu YJ, Huang XF, Yang FY, Huang JX. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development. Gene, 2017, 618: 49-56. | [68] | Guo JZ, Zhao W, Zhan SY, Li L, Zhong T, Wang LJ, Dong Y, Zhang HP. Identification and expression profiling of miRNAome in goat longissimus dorsi muscle from prenatal stages to a neonatal stage. PLoS One, 2016, 11(10): e0165764. |
|