[1] | Ambros V . microRNAs: tiny regulators with great potential. Cell, 2001,107(7):823-826. | [2] | Lai EC . Micro RNAs are complementary to 3° UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 2002,30(4):363-364. | [3] | Kozomara A , Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 2014,42(Database issue):D68-D73. | [4] | Lau NC, Lim LP, Weinstein EG, Bartel DP . An abundant class of tiny RNAs with probable regulatory roles in caenorhabditis elegans. Science, 2001,294(5543):858-862. | [5] | Lee Y, Jeon K, Lee JT, Kim S, Kim VN . MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002,21(17):4663-4670. | [6] | Nishimura K, Ohtaka M, Takada H, Kurisaki A, Tran NVK, Tran YTH, Hisatake K, Sano M, Nakanishi M . Simple and effective generation of transgene-free induced pluripotent stem cells using an auto-erasable Sendai virus vector responding to microRNA-302. Stem Cell Res, 2017,23:13-9. | [7] | Barroso-del Jesus A, Lucena-Aguilar G, Menendez P . The miR-302-367 cluster as a potential stemness regulator in ESCs. Cell Cycle, 2009,8(3):394-398. | [8] | Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT . Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res, 2011,39(3):1054-1065. | [9] | Li Z, Yang CS, Nakashima K, Rana TM . Small RNA-mediated regulation of iPS cell generation. EMBO J, 2011,30(5):823-834. | [10] | Pu JY, Wu SY, Xie HP, Li YY, Yang ZC, Wu XW, Huang X. miR-146a Inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol, 2017,162(12):3645-3659. | [11] | Magilnick N, Reyes EY, Wang WL, Vonderfecht SL, Gohda J, Inoue JI, Boldin MP. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci USA, 2017,114(34):E7140-E7149. | [12] | Horak M, Novak J, Bienertova-Vasku J . Muscle-specific microRNAs in skeletal muscle development. Dev Biol, 2016,410(1):1-13. | [13] | Ma WB, Hu SG, Yao GX, Xie SS, Ni MJ, Liu Q, Gao XX, Zhang J, Huang XX, Zhang YL . An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem, 2013,288(41):29369-29381. | [14] | Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826. | [15] | Xie SS, Zhang Y, Zhang LS, Li GL, Zhao CZ, Ni P, Zhao SH. sgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects.Hereditas(Beijing), 2015, 37(11):1125-1136. | [15] | 谢胜松, 张懿, 张利生, 李广磊, 赵长志, 倪攀, 赵书红 . CRISPR/Cas9系统中sgRNA设计与脱靶效应评估. 遗传, 2015,37(11):1125-1136. | [16] | Li J, Zhang Y, Chen KL, Shan QW, Wang YP, Liang Z, Gao CX . CRISPR/Cas: a novel way of RNA-guided genome editing. Hereditas(Beijing), 2013,35(11):1265-1273. | [16] | 李君, 张毅, 陈坤玲, 单奇伟, 王延鹏, 梁振, 高彩霞 . CRISPR/Cas系统: RNA靶向的基因组定向编辑新技术. 遗传, 2013,35(11):1265-1273. | [17] | Xie SS, Shen B, Zhang CB, Huang XX, Zhang YL. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One, 2014,9(6):e100448. | [18] | Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ . CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods, 2015,12(10):982-988. | [19] | Chari R, Yeo NC, Chavez A, Church GM. sgRNA Scorer 2.0: A species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol, 2017,6(5):902-904. | [20] | Rahman MK, Rahman MS . CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems. PLoS One, 2017,12(8):e0181943. | [21] | Zhao CZ, Zheng XG, Qu WB, Li GL, Li XY, Miao YL, Han XS, Liu XD, Li ZH, Ma YH, Shao QZ, Li HW, Sun F, Xie SS, Zhao SH . CRISPR-offinder: a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif. Int J Biol Sci, 2017,13(12):1470-1478. | [22] | Zhao Y, Dai Z, Liang Y, Yin M, Ma K, He M, Ouyang H, Teng CB . Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep, 2014,4:3943. | [23] | Bassett AR, Azzam G, Wheatley L, Tibbit C, Rajakumar T, cGowan S, Stanger N, Ewels PA, Taylor S, Ponting CP, Liu JL, Sauka-Spengler T, Fulga TA. Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nat Commun, 2014,5:4640. | [24] | Jiang Q, Meng X, Meng L, Chang N, Xiong J, Cao H, Liang Z . Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol, 2014,11(10):1243-1249. | [25] | Jing W, Zhang X, Sun W, Hou X, Yao Z, Zhu Y . CRISPR/ CAS9-Mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264.7 cells. Biomed Res Int, 2015,2015:326042. | [26] | Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y . CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep, 2016,6:22312. | [27] | Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015,163(3):759-771. | [28] | Narayanan A, Hill-Teran G, Moro A, Ristori E, Kasper DM, Roden CA, Lu J, Nicoli S . In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system. Sci Rep, 2016,6:32386. | [29] | Zhang YH, Wu LZ, Liang HL, Yang Y, Qiu J, Kan Q, Zhu W, Ma CL, Zhou XY . Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system. Am J Transl Res, 2017,9(2):355-365. | [30] | Xuan L, Qing J, Wen L, Zhou L, Wang X, Jiang HL, Chen J, Chang LS, LI Q . Application of CRISPR/Cas9 gene targeting technology for establishing miRNA-301aknockout mouse model. Acad J Sec Mil Med Univ, 2015,36(3):256-260. | [30] | 刘宣, 季青, 李文, 周利红, 王璇, 江海丽, 陈静, 畅立圣, 李琦 . 应用CRISPR/Cas9基因编辑技术建立miRNA-301a敲除小鼠. 第二军医大学学报, 2015,36(3):256-260. | [31] | Zhao Y, Shi CH, Zhao Y, Xin ZQ, Liu PJ, Zhang CQ, Bai B, Bai YJ, Wang H, Zhang H . Construction of miRNA-29b1 knockout mice based on CRISPR/Cas9 technology. Chin J Compar Med, 2016,26(12):1-4 | [31] | 赵勇, 师长宏, 赵亚, 辛智倩, 刘佩娟, 张彩勤, 白冰, 白杰英, 王华, 张海 . 利用CRISPR/Cas9技术构建miRNA-29b1基因敲除小鼠. 中国比较医学杂志, 2016,26(12):1-4. | [32] | Zhao CZ, Zhang Y, Li GL, Chen JL, Li JJ, Ren RM, Ni P, Zhao SH, Xie SS . Development of a graphical user interface for sgRNAcas9 and its application. Hereditas(Beijing), 2015,37(10):1061-1072. | [32] | 赵长志, 张懿, 李广磊, 陈济良, 李京津, 任瑞敏, 倪攀, 赵书红, 谢胜松 . sgRNAcas9软件图形用户界面开发及应用. 遗传, 2015,37(10):1061-1072. |
|