[1] | Ambros V . microRNAs: tiny regulators with great potential. Cell, 2001,107(7):823-826. | [2] | Lai EC . Micro RNAs are complementary to 3° UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 2002,30(4):363-364. | [3] | Kozomara A , Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 2014,42(Database issue):D68-D73. | [4] | Lau NC, Lim LP, Weinstein EG, Bartel DP . An abundant class of tiny RNAs with probable regulatory roles in caenorhabditis elegans. Science, 2001,294(5543):858-862. | [5] | Lee Y, Jeon K, Lee JT, Kim S, Kim VN . MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002,21(17):4663-4670. | [6] | Nishimura K, Ohtaka M, Takada H, Kurisaki A, Tran NVK, Tran YTH, Hisatake K, Sano M, Nakanishi M . Simple and effective generation of transgene-free induced pluripotent stem cells using an auto-erasable Sendai virus vector responding to microRNA-302. Stem Cell Res, 2017,23:13-9. | [7] | Barroso-del Jesus A, Lucena-Aguilar G, Menendez P . The miR-302-367 cluster as a potential stemness regulator in ESCs. Cell Cycle, 2009,8(3):394-398. | [8] | Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT . Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res, 2011,39(3):1054-1065. | [9] | Li Z, Yang CS, Nakashima K, Rana TM . Small RNA-mediated regulation of iPS cell generation. EMBO J, 2011,30(5):823-834. | [10] | Pu JY, Wu SY, Xie HP, Li YY, Yang ZC, Wu XW, Huang X. miR-146a Inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol, 2017,162(12):3645-3659. | [11] | Magilnick N, Reyes EY, Wang WL, Vonderfecht SL, Gohda J, Inoue JI, Boldin MP. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci USA, 2017,114(34):E7140-E7149. | [12] | Horak M, Novak J, Bienertova-Vasku J . Muscle-specific microRNAs in skeletal muscle development. Dev Biol, 2016,410(1):1-13. | [13] | Ma WB, Hu SG, Yao GX, Xie SS, Ni MJ, Liu Q, Gao XX, Zhang J, Huang XX, Zhang YL . An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem, 2013,288(41):29369-29381. | [14] | Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826. | [15] | Xie SS, Zhang Y, Zhang LS, Li GL, Zhao CZ, Ni P, Zhao SH. sgRNA design for the C |
[1] |
王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[2] |
李亚楠, 张贤君, 张宁, 梁雅琳, 张宇星, 招华兴, 李紫聪, 黄思秀. 过表达组蛋白H3K9me3去甲基化酶对猪克隆胚胎发育的影响[J]. 遗传, 2023, 45(1): 67-77. |
[3] |
高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. |
[4] |
刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[5] |
张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[6] |
张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[7] |
刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[8] |
韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[9] |
朱艳, 魏明, 周晓, 邓林华, 仇剑, 李果, 周世强, 谢浩, 李德生, 王承东. 大熊猫(Ailuropoda melanoleuca) miRNA研究进展[J]. 遗传, 2021, 43(9): 849-857. |
[10] |
唐湘薇, 楚丹, 颜赛娜, 尹艳飞, 卞桥, 翁波, 陈斌, 冉茂良. miR-191靶向BDNF基因通过激活PI3K/AKT信号通路促进猪未成熟支持细胞增殖[J]. 遗传, 2021, 43(7): 680-693. |
[11] |
杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[12] |
周子文, 王雪, 丁向东. 基于高密度SNP标记估计群体间遗传关联[J]. 遗传, 2021, 43(4): 340-349. |
[13] |
彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[14] |
魏强, 奥岩, 杨漫漫, 陈涛, 韩虎, 张兴举, 王然, 夏秋菊, 姜芳芳, 李勇. 利用全基因组重测序技术鉴定五指山猪GHR突变体转基因插入位点[J]. 遗传, 2021, 43(12): 1149-1158. |
[15] |
韩程程, 夏凯, 龚茹莹, 吴栩涵, 张蕾, 梁新乐. 适于检测非洲猪瘟病毒的点亮Spinach-p54 RNA适配体的设计及应用[J]. 遗传, 2021, 43(12): 1170-1178. |
|