[1] | da Silva LA, Teixeira SCG, Pérez DV, Marques MRDC. Impact of chemical oxidation on brazilian soils. J Braz Chem Soc, 2012, 23(2): 367-371. | [2] | Braith RW, Stewart KJ. Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation, 2006, 113(22): 2642-2650. | [3] | Marwick TH, Hordern MD, Miller T, Chyun DA, Bertoni AG, Blumenthal RS, Philippides G, Rocchini A, Council on Clinical Cardiology, American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee; Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, Council on Nutrition, Physical Activity, and Metabolism, Interdisciplinary Council on Quality of Care and Outcomes Research. Exercise training for type 2 diabetes mellitus: impact on cardiovascular risk: A scientific statement from the american heart association. Circulation, 2009, 119(25): 3244-3262. | [4] | Pedersen BK, Febbraio MA. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat Rev Endocrino, 2012, 8(8): 457-465. | [5] | Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O'Gorman DJ, Zierath JR. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab, 2012, 15(3): 405-411. | [6] | Russell AP, Lamon S, Boon H, Wada S, Güller I, Brown EL, Chibalin AV, Zierath JR, Snow RJ, Stepto N, Wadley GD, Akimoto T. Regulation of mirnas in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol, 2013, 591(18): 4637-4653. | [7] | Sano H, Kim HJ. Transgenerational epigenetic inheritance in plants. In: Grafi G, Ohad N, eds. Epigenetic Memory and Control in Plants. Berlin Heidelberg: Springer, 2013: 233-253. | [8] | Heard E, Martienssen RA. Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, 2014, 157(1): 95-109. | [9] | Dodge JE, Ramsahoye BH, Wo ZG, Okano M, Li E. De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene, 2002, 289(1-2): 41-48. | [10] | Jeltsch A. Beyond watson and crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem, 2002, 3(4): 274-293. | [11] | Turner BM. Histone acetylation and an epigenetic code. BioEssays, 2000, 22(9): 836-845. | [12] | Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev, 2002, 12(12): 198-209. | [13] | Zhang ZH, Kang XJ, Mu SM. Histone phosphorylation and spermatogenesis. Hereditas (Beijing), 2014, 36(3): 220-227. | [13] | 张朝晖, 康现江, 穆淑梅. 组蛋白磷酸化修饰与精子发生. 遗传, 2014, 36(3): 220-227. | [14] | Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev, 2003, 17(22): 2733-2740. | [15] | Chen X, Yang AG, Wang T. Histone ubiquitination, ubiquitination, and crosstalk with other histone modifications. Chin J Cell Mol Immunol, 2014, 30(11): 1228-1231. | [15] | 陈旭, 杨安钢, 王涛. 组蛋白泛素化、去泛素化以及与其他组蛋白修饰间的“串扰”. 细胞与分子免疫学杂志, 2014, 30(11): 1228-1231. | [16] | Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res, 2011, 21(3): 381-395. | [17] | Krol J, Loedige I, Filipowicz W. The widespread regulation of microrna biogenesis, function and decay. Nat Rev Genetics, 2010, 11(9): 597-610. | [18] | Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by micrornas: Are the answers in sight?. Nat Rev Genetics, 2008, 9(2): 102-114. | [19] | Gueugneau M, Coudy-Gandilhon C, Théron L, Meunier B, Barboiron C, Combaret L, Taillandier D, Polge C, Attaix D, Picard B, Verney J, Roche F, Féasson L, Barthélémy JC, Béchet D. Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome. J Gerontol Ser A, 2015, 70(5): 566-576. | [20] | Zhu DL, Xu P, Xie F, Xiong SY. Function of histochemical type of skeletal muscle fiber in rat and myosin heavy chain. Acta Anat Sin, 2007, 38(1): 93-97. | [20] | 朱道立, 徐萍, 谢锋, 熊寿勇. 大鼠骨骼肌纤维组织化学分型与肌球蛋白重链的功能. 解剖学报, 2007, 38(1): 93-97. | [21] | Kupa EJ, Roy SH, Kandarian SC, De Luca CJ. Effects of muscle fiber type and size on EMG median frequency and conduction velocity. J Appl Physiol, 1995, 79(1): 23-32. | [22] | Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kj?r M, Suetta C, Magnusson P, Aagaard P. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism, 2005, 54(2): 151-156. | [23] | Ferreira JCB, Bacurau AV, Bueno CR, Cunha TC, Tanaka LY, Jardim MA, Ramires PR, Brum PC. Aerobic exercise training improves Ca2+ handling and redox status of skeletal muscle in mice. . Exp Biol Med, 2010, 235(4): 497-505. | [24] | R?ckl KSC, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes, 2007, 56(8): 2062-2069. | [25] | Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair S, Yan Z, Leinwand LA, Spiegelman BM. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 2012, 151(6): 1319-1331. | [26] | Choi CS, Befroy DE, Codella R, Kim S, Reznick RM, Hwang YJ, Liu ZX, Lee HY, Distefano A, Samuel VT, Zhang DY, Cline GW, Handschin C, Lin JD, Petersen KF, Spiegelman BM, Shulman GI. Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci USA, 2009, 105(50): 19926-19931. | [27] | Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu ZD, Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J, 2007, 26(7): 1913-1923. | [28] | Gibala MJ, Little JP, Van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J Physiol, 2006, 575(3): 901-911. | [29] | Smith JAH, Collins M, Grobler LA, Magee CJ, Ojuka EO. Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo. Am J Physiol Endocrinol Metab, 2007, 292(2): E413-E420. | [30] | McGee SL, Hargreaves M. Exercise and skeletal muscle glucose transporter 4 expression: Molecular mechanisms. Clin Exp Pharmacol Physio, 2006, 33(4): 395-399. | [31] | Burgomaster KA, Heigenhauser GJF, Gibala MJ. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time- trial performance. J Appl Physiol, 2006, 100(6): 2041-2047. | [32] | LeBrasseur NK, Walsh K, Arany Z. Metabolic benefits of resistance training and fast glycolytic skeletal muscle. Am J Physiol Endocrinol Metab, 2010, 300(1): E3-E10. | [33] | Shojaee-Moradie F, Baynes KC, Pentecost C, Bell JD, Thomas EL, Jackson NC, Stolinski M, Whyte M, Lovell D, Bowes SB, Gibney J, Jones RH, Umpleby AM. Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism. Diabetologia, 2007, 50(2): 404-413. | [34] | Glatz JFC, Bonen A, Luiken JJFP. Exercise and insulin increase muscle fatty acid uptake by recruiting putative fatty acid transporters to the sarcolemma. Curr Opin Clin Nutr Metab Care, 2002, 5(4): 365-370. | [35] | Holloway GP, Bezaire V, Heigenhauser GJF, Tandon NN, Glatz JFC, Luiken JJFP, Bonen A, Spriet LL. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol, 2006, 571(1): 201-210. | [36] | Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest, 2007, 117(6): 1690-1698. | [37] | Pehm?ller C, Brandt N, Birk JB, H?eg LD, Sj?berg KA, Goodyear LJ, Kiens B, Richter EA, Wojtaszewski JFP. Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of tbc1 domain family member 4. Diabetes, 2012, 61(11): 2743-2752. | [38] | Biens? RS, Olesen J, Gliemann L, Schmidt JF, Matzen MS, Wojtaszewski JFP, Hellsten Y, Pilegaard H. Effects of exercise training on regulation of skeletal muscle glucose metabolism in elderly men. J Gerontol Ser A, 2015, 70(7): 866-872. | [39] | Jing EX, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA, 2011, 108(35): 14608-14613. | [40] | Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low‐volume high‐intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. J Physiol, 2010, 588(6): 1011-1022. | [41] | Talanian JL, Holloway GP, Snook LA, Heigenhauser GJ, Bonen A, Spriet LL. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am J Physiol Endocrinol Metabo, 2010, 299(2): E180-E188. | [42] | Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, Weishaupt H, Hansson J, Eriksson KF, Groop L, Ling C. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes, 2012, 61(12): 3322-3332. | [43] | Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, Cheema BS, Lys I, Leikis M, Sheard PW, Wakefield SJ, Breier B, Hathout Y, Brown K, Marathi R, Orkunoglu-Suer FE, Devaney JM, Leiken B, Many G, Krebs J, Hopkins WG, Hoffman EP. Multi-omic integrated networks connect DNA methylation and mirna with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity. Physiol Genomics, 2014, 46(20): 747-765. | [44] | Laker RC, Lillard TS, Okutsu M, Zhang M, Hoehn KL, Connelly JJ, Yan Z. Exercise prevents maternal high-fat diet-induced hypermethylation of the. Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes, 2014, 63(5): 1605-1611. | [45] | Bryan AD, Magnan RE, Hooper AEC, Harlaar N, Hutchison KE. Physical activity and differential methylation of breast cancer genes assayed from saliva: A preliminary investigation. Ann Behav Med, 2013, 45(1): 89-98. | [46] | Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, Vishwanatha JK, Morabia A, Santella RM. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics, 2011, 6(3): 293-299. | [47] | White AJ, Sandler DP, Bolick SCE, Xu ZL, Taylor JA, DeRoo LA. Recreational and household physical activity at different time points and DNA global methylation. Eur J Cancer, 2013, 49(9): 2199-2206. | [48] | McGee SL, Fairlie E, Garnham AP, Hargreaves M. Exercise-induced histone modifications in human skeletal muscle. J Physiol, 2009, 587(24): 5951-5958. | [49] | Mcgee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol, 2011, 110(1): 258-263. | [50] | Smith JA, Kohn TA, Chetty AK, Ojuka EO. CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am J Physiol Endocrinol Metab, 2008, 295(3): E698-E704. | [51] | Gurd BJ. Deacetylation of PGC-1α by SIRT1: Importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metab, 2011, 36(5): 589-597. | [52] | Koltai E, Szabo Z, Atalay M, Boldogh I, Naito H, Goto S, Nyakas C, Radak Z. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev, 2010, 131(1): 21-28. | [53] | Pandorf CE, Haddad F, Wright C, Bodell PW, Baldwin KM. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. Am J Physiol Cell Physiol, 2009, 297(1): C6-C16. | [54] | Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One, 2009, 4(5): e5610. | [55] | Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T. The microrna miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab, 2010, 298(4): E799-E806. | [56] | Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol, 2011, 110(2): 309-317. | [57] | Nielsen S, Scheele C, Yfanti C, ?kerstr?m T, Nielsen AR, Pedersen BK, Laye M. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol, 2010, 588(20): 4029-4037. | [58] | Cho KH, Kim MJ, Jeon GJ, Chung HY. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol Biol Rep, 2011, 38(3): 2161-2166. | [59] | McLean CS, Mielke C, Cordova JM, Langlais PR, Bowen B, Miranda D, Coletta DK, Mandarino LJ. Gene and microRNA expression responses to exercise; relationship with insulin sensitivity. PLoS One, 2015, 10(5): e0127089. | [60] | Keller P, Vollaard NB, Gustafsson T, Gallagher IJ, Sundberg CJ, Rankinen T, Britton SL, Bouchard C, Koch LG, Timmons JA. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol, 2011, 110(1): 46-59. | [61] | Luo S, Lu J Y, Liu LC, Yin YF, Chen CY, Han X, Wu BH, Xu RG, Liu W, Yan PX, Shao W, Lu Z, Li HT, Na J, Tang FC, Wang JL, Zhang YE, Shen XH. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell, 2016, 18(5): 637-652. | [62] | Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, Le Noble F, Rajewsky N. Circular rnas are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338. | [63] | Wang Q, Lee I, Ren JP, Ajay SS, Lee YS, Bao XY. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther, 2013, 21(2): 368-379. | [64] | Li Q, Hu B, Hu GW, Chen CY, Niu X, Liu J, Zhou SM, Zhang CQ, Wang Y, Deng ZF. tRNA-derived small non-coding RNAs in response to ischemia inhibit angiogenesis. Sci Rep, 2015, 6: 20850. |
|