[1] | Dang DT, Zhao WD, Mahatan CS, Geiman DE, Yang VW . Opposing effects of Krüppel-like factor 4 (gut-enriched Kruppel-like factor) and Krüppel-like factor 5 (intestinal- enriched Krüppel-like factor) on the promoter of the Krüppel-like factor 4 gene. Nucleic Acids Res, 2002,30(13):2736-2741. | [2] | Presnell JS, Schnitzler CE, Browne WE . KLF/SP transcription factor family evolution: xxpansion, diversification, and innovation in Eukaryotes. Genome Biol Evol, 2015,7(8):2289-2309. | [3] | Pollak NM, Hoffman M, Goldberg IJ, Drosatos K . Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci, 2018,3(1):132-156. | [4] | Zhang ZW, Li H, Wang N . Krüppel-like Factors(KLFs) and adipocyte differentiation. Chin J Biochem Mol Biol, 2009,25(11):983-990. | [4] | 张志威, 李辉, 王宁 . KLF转录因子家族与脂肪细胞分化. 中国生物化学与分子生物学报, 2009(11):983-990. | [5] | Lavallee G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME, Nemer M . The Krüppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J, 2006,25(21):5201-5213. | [6] | Darwich R, Li W, Yamak A, Komati H, Andelfinger G, Sun K, Nemer M . KLF13 is a genetic modifier of the Holt- Oram syndrome gene TBX5. Hum Mol Genet, 2017,26(5):942-954. | [7] | Xiong Q, Ruan XY, Fang XD . Progress on Sp1-like and Krüppel-like factors. Hereditas(Beijing), 2010,32(6):531-538. | [7] | 熊倩, 阮修艳, 方向东 . Sp1/Krüppel样因子的研究进展. 遗传, 2010,32(6):531-538. | [8] | Yu K, Zheng B, Han M, Wen JK . ATRA activates and PDGF-BB represses the SM22alpha promoter through KLF4 binding to, or dissociating from, its cis-DNA elements. Cardiovasc Res, 2011,90(3):464-474. | [9] | Shyu KG, Cheng WP, Wang BW . Angiotensin II downregulates microRNA-145 to regulate Krüppel-like Factor 4 and myocardin expression in human coronary arterial smooth muscle cells under high glucose conditions. Mol Med, 2015,21(1):616-625. | [10] | Kim CK, He P, Bialkowska AB, Yang VW . SP and KLF transcription factors in digestive physiology and diseases. Gastroenterology, 2017,152(8):1845-1875. | [11] | Heineke J, Molkentin JD . Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol, 2006,7(8):589-600. | [12] | Yoshida T, Yamashita M, Horimai C, Hayashi M . Krüppel- like factor 4 protein regulates isoproterenol-induced cardiac hypertrophy by modulating myocardin expression and activity. J Biol Chem, 2014,289(38):26107-26118. | [13] | Sawaki D, Hou L, Tomida S, Sun J, Zhan H, Aizawa K, Son BK, Kariya T, Takimoto E, Otsu K, Conway SJ, Manabe I, Komuro I, Friedman SL, Nagai R, Suzuki T . Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes. Cardiovasc Res, 2015,107(4):420-430. | [14] | Balligand JL . KLF6 orchestrates cardiac myocyte-to- fibroblast communication: 'He who has ears to hear, let him hear'. Cardiovasc Res, 2015,107(4):397-399. | [15] | Liao X, Haldar SM, Lu Y, Jeyaraj D, Paruchuri K, Nahori M, Cui Y, Kaestner KH, Jain MK . Krüppel-like factor 4 regulates pressure-induced cardiac hypertrophy. J Mol Cell Cardiol, 2010,49(2):334-338. | [16] | Jang C, Arany Z . Mitochondria Cripple without Krüppel. Trends Endocrinol Metab, 2015,26(11):587-589. | [17] | Kee HJ, Kook H . Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol, 2009,47(6):770-780. | [18] | Liao X, Zhang R, Lu Y, Prosdocimo DA, Sangwung P, Zhang L, Zhou G, Anand P, Lai L, Leone TC, Fujioka H, Ye F, Rosca MG, Hoppel CL, Schulze PC, Abel ED, Stamler JS, Kelly DP, Jain MK . Krüppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis. J Clin Invest, 2015,125(9):3461-3476. | [19] | Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A . Differential regulation of Krüppel- like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. Biochim Biophys Acta, 2008,1783(6):1229-1236. | [20] | Subramaniam M, Hawse JR, Rajamannan NM, Ingle JN, Spelsberg TC . Functional role of KLF10 in multiple disease processes. Biofactors, 2010,36(1):8-18. | [21] | Subramaniam M, Harris SA, Oursler MJ, Rasmussen K, Riggs BL, Spelsberg TC . Identification of a novel TGF- beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res, 1995,23(23):4907-4912. | [22] | Bos JM, Subramaniam M, Hawse JR, Christiaans I, Rajamannan NM, Maleszewski JJ, Edwards WD, Wilde AA, Spelsberg TC, Ackerman MJ . TGFbeta-inducible early gene-1 (TIEG1) mutations in hypertrophic cardiomyopathy. J Cell Biochem, 2012,113(6):1896-1903. | [23] | Rajamannan NM, Subramaniam M, Abraham TP, Vasile VC, Ackerman MJ, Monroe DG, Chew TL, Spelsberg TC . TGFbeta inducible early gene-1 (TIEG1) and cardiac hypertrophy: Discovery and characterization of a novel signaling pathway. J Cell Biochem, 2007,100(2):315-325. | [24] | Zheng Y, Kong Y, Li F . Krüppel-like transcription factor 11 (KLF11) overexpression inhibits cardiac hypertrophy and fibrosis in mice. Biochem Biophys Res Commun, 2014,443(2):683-688. | [25] | Clerk A, Kemp TJ, Zoumpoulidou G, Sugden PH . Cardiac myocyte gene expression profiling during H2O2-induced apoptosis. Physiol Genomics, 2007,29(2):118-127. | [26] | Gordon AR, Outram SV, Keramatipour M, Goddard CA, Colledge WH, Metcalfe JC, Hager-Theodorides AL, Crompton T, Kemp PR . Splenomegaly and modified erythropoiesis in KLF13-/- mice. J Biol Chem, 2008,283(18):11897-11904. | [27] | Kwon SJ, Crespo-Barreto J, Zhang W, Wang T, Kim DS, Krensky A, Clayberger C . KLF13 cooperates with c-Maf to regulate IL-4 expression in CD4+ T cells . J Immunol, 2014,192(12):5703-5709. | [28] | Cruz-Topete D, He B, Xu X, Cidlowski JA . Krüppel-like Factor 13 is a major mediator of glucocorticoid receptor signaling in cardiomyocytes and protects these cells from DNA damage and death. J Biol Chem, 2016,291(37):19374-19386. | [29] | Leenders JJ, Wijnen WJ, van der Made I, Hiller M, Swinnen M, Vandendriessche T, Chuah M, Pinto YM, Creemers EE . Repression of cardiac hypertrophy by KLF15: underlying mechanisms and therapeutic implications. PloS One, 2012,7(5):e36754. | [30] | Haldar SM, Lu Y, Jeyaraj D, Kawanami D, Cui Y, Eapen SJ, Hao C, Li Y, Doughman YQ, Watanabe M, Shimizu K, Kuivaniemi H, Sadoshima J, Margulies KB, Cappola TP, Jain MK . Klf15 deficiency is a molecular link between heart failure and aortic aneurysm formation. Sci Transl Med, 2010, 2(26): 26ra26. | [31] | Leenders JJ, Wijnen WJ, Hiller M, van der Made I, Lentink V, van Leeuwen RE, Herias V, Pokharel S, Heymans S, de Windt LJ, Hoydal MA, Pinto YM, Creemers EE . Regulation of cardiac gene expression by KLF15, a repressor of myocardin activity. J Biol Chem, 2010,285(35):27449-27456. | [32] | Kuwahara K, Kinoshita H, Kuwabara Y, Nakagawa Y, Usami S, Minami T, Yamada Y, Fujiwara M, Nakao K . Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol Cell Biol, 2010,30(17):4134-4148. | [33] | Fisch S, Gray S, Heymans S, Haldar SM, Wang B, Pfister O, Cui L, Kumar A, Lin Z, Sen-Banerjee S, Das H, Petersen CA, Mende U, Burleigh BA, Zhu Y, Pinto YM, Liao R, Jain MK . Krüppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci USA, 2007,104(17):7074-7079. | [34] | Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH . Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation, 2008,118(9):934-946. | [35] | Zhang L, Prosdocimo DA, Bai X, Fu C, Zhang R, Campbell F, Liao X, Coller J, Jain MK . KLF15 Establishes the landscape of diurnal expression in the heart. Cell Rep, 2015,13(11):2368-2375. | [36] | Prosdocimo DA, Sabeh MK, Jain MK . Krüppel-like factors in muscle health and disease. Trends Cardiovasc Med, 2015,25(4):278-287. | [37] | Prosdocimo DA, Anand P, Liao X, Zhu H, Shelkay S, Artero-Calderon P, Zhang L, Kirsh J, Moore D, Rosca MG, Vazquez E, Kerner J, Akat KM, Williams Z, Zhao J, Fujioka H, Tuschl T, Bai X, Schulze PC, Hoppel CL, Jain MK, Haldar SM . Krüppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem, 2014,289(9):5914-5924. | [38] | Tandler B, Fujioka H, Hoppel CL, Haldar SM, Jain MK . Megamitochondria in cardiomyocytes of a knockout (Klf15-/-) mouse. Ultrastruct Pathol, 2015,39(5):336-339. | [39] | Yoshikawa N, Nagasaki M, Sano M, Tokudome S, Ueno K, Shimizu N, Imoto S, Miyano S, Suematsu M, Fukuda K, Morimoto C, Tanaka H . Ligand-based gene expression profiling reveals novel roles of glucocorticoid receptor in cardiac metabolism. Am J Physiol Endocrinol Metab, 2009,296(6):E1363-E1373. | [40] | Ha JM, Yun SJ, Jin SY, Lee HS, Kim SJ, Shin HK, Bae SS . Regulation of vascular smooth muscle phenotype by cross-regulation of Krüppel-like factors. Korean J Physiol Pharmacol, 2017,21(1):37-44. | [41] | He M, Zheng B, Zhang Y, Zhang XH, Wang C, Yang Z, Sun Y, Wu XL, Wen JK . KLF4 mediates the link between TGF-β1-induced gene transcription and H3 acetylation in vascular smooth muscle cells. FASEB J, 2015,29(9):4059-4070. | [42] | Zheng B, Han M, Shu YN, Li YJ, Miao SB, Zhang XH, Shi HJ, Zhang T, Wen JK . HDAC2 phosphorylation- dependent Klf5 deacetylation and RARalpha acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs. Cell Res, 2011,21(10):1487-1508. | [43] | Li HX, Han M, Bernier M, Zheng B, Sun SG, Su M, Zhang R, Fu JR, Wen JK . Krüppel-like factor 4 promotes differrentiation by transforming growth factor-beta receptor- mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J Biol Chem, 2010,285(23):17846-17856. | [44] | Zhang XH, Zheng B, Gu C, Fu JR, Wen JK . TGF-β1 downregulates AT1 receptor expression via PKC-δ- mediated Sp1 dissociation from KLF4 and Smad-mediated PPAR-γ association with KLF4. Arterioscler Thromb Vasc Biol, 2012,32(4):1015-1023. | [45] | Zhu TT, Zhang WF, Luo P, He F, Ge XY, Zhang Z, Hu CP . Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2- mediated mitochondrial fusion. Eur J Pharmacol, 2017,809:42-51. | [46] | Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN , Srivastava D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 2009,460(7256):705-710. | [47] | Lin CM, Wang BW, Pan CM, Fang WJ, Chua SK, Hou SW, Chang H, Shyu KG . Effects of flavonoids on MicroRNA 145 regulation through Klf4 and myocardin in neointimal formation in vitro and in vivo. J Nutr Biochem., 2018,52:27-35. | [48] | Liao XH, Xiang Y, Li H, Zheng L, Xu Y, Xi YC, Li JP, Zhang XY, Xing WB, Cao DS, Bao LY, Zhang TC . VEGF-A stimulates STAT3 activity via nitrosylation of myocardin to regulate the expression of vascular smooth muscle cell differentiation markers. Sci Rep, 2017,7(1):2660. | [49] | Nagai R, Suzuki T, Aizawa K, Shindo T, Manabe I . Significance of the transcription factor KLF5 in cardiovascular remodeling. J Thromb Haemost, 2005,3(8):1569-1576. | [50] | Gao DF, Hao GH, Meng Z, Ning N, Yang G, Liu ZW, Dong X, Niu XL . Rosiglitzone suppresses angiotensin II-induced production of KLF5 and cell proliferation in rat vascular smooth muscle cells. PloS One, 2015,10(4):e123724. | [51] | Zhang ML, Zheng B, Tong F, Yang Z, Wang ZB, Yang BM, Sun Y, Zhang XH, Zhao YL ,Wen JK . iNOS-derived peroxynitrite mediates high glucose-induced inflammatory gene expression in vascular smooth muscle cells through promoting KLF5 expression and nitration. Biochim Biophys Acta, 2017,1863(11):2821-2834. | [52] | Zhang J, Zheng B, Zhou PP, Zhang RN, He M, Yang Z, Wen JK . Vascular calcification is coupled with phenotypic conversion of vascular smooth muscle cells through Klf5-mediated transactivation of the Runx2 promoter. Biosci Rep, 2014,34(6):e00148. | [53] | Kim SH, Yun SJ, Kim YH, Ha JM, Jin SY, Lee HS, Kim SJ, Shin HK, Chung SW, Bae SS . Essential role of Krüppel-like factor 5 during tumor necrosis factor alpha- induced phenotypic conversion of vascular smooth muscle cells. Biochem Biophys Res Commun, 2015,463(4):1323-1327. | [54] | Yao EH, Fukuda N, Ueno T, Tsunemi A, Endo M, Matsumoto K . Complement 3 activates the KLF5 gene in rat vascular smooth muscle cells. Biochem Biophys Res Commun, 2008,367(2):468-473. | [55] | Lv XR, Zheng B, Li SY, Han AL, Wang C, Shi JH, Zhang XH, Liu Y, Li YH, Wen JK . Synthetic retinoid Am80 up-regulates apelin expression by promoting interaction of RARα with KLF5 and Sp1 in vascular smooth muscle cells. Biochem J, 2013,456(1):35-46. | [56] | Matsumura T, Suzuki T, Aizawa K, Munemasa Y, Muto S, Horikoshi M, Nagai R . The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Krüppel-like factor 5 through direct interaction. J Biol Chem, 2005,280(13):12123-12129. | [57] | Alaiti MA, Orasanu G, Tugal D, Lu Y, Jain MK . Krüppel-like factors and vascular inflammation: implications for atherosclerosis. Curr Atheroscler Rep, 2012,14(5):438-449. | [58] | Lu Y, Haldar S, Croce K, Wang Y, Sakuma M, Morooka T, Wang B, Jeyaraj D, Gray SJ, Simon DI, Jain MK . Krüppel-like factor 15 regulates smooth muscle response to vascular injury--brief report. Arterioscler Thromb Vasc Biol, 2010,30(8):1550-1552. | [59] | Lu Y, Zhang L, Liao X, Sangwung P, Prosdocimo DA, Zhou G, Votruba AR, Brian L, Han YJ, Gao H, Wang Y, Shimizu K, Weinert-Stein K, Khrestian M, Simon DI, Freedman NJ, Jain MK . Krüppel-like factor 15 is critical for vascular inflammation. J Clin Invest, 2013,123(10):4232-4241. | [60] | Sunadome K, Yamamoto T, Ebisuya M, Kondoh K, Sehara-Fujisawa A, Nishida E . ERK5 regulates muscle cell fusion through Klf transcription factors. Dev Cell, 2011,20(2):192-205. | [61] | Palstra AP, Rovira M, Rizo-Roca D, Torrella JR, Spaink HP, Planas JV . Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish. BMC Genomics, 2014,15(1):1136. | [62] | Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D, Schmolke M, Ludwig S, Roth J, Goebeler M, Schmidt M . Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Krüppel-like factor 4 (KLF4). J Biol Chem, 2010,285(34):26199-26210. | [63] | Sue N, Jack BH, Eaton SA, Pearson RC, Funnell AP, Turner J, Czolij R, Denyer G, Bao S, Molero-Navajas JC, Perkins A, Fujiwara Y, Orkin SH, Bell-Anderson K, Crossley M . Targeted disruption of the basic Krüppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol, 2008,28(12):3967-3978. | [64] | Himeda CL, Ranish JA, Pearson RC, Crossley M, Hauschka SD . KLF3 regulates muscle-specific gene expression and synergizes with serum response factor on KLF binding sites. Mol Cell Biol, 2010,30(14):3430-3443. | [65] | Zhang ZW, Wu CY, Li H, Wang N . Expression and functional analyses of Krüppel-like factor 3 in chicken adipose tissue. Biosci Biotechnol Biochem, 2014,78(4):614-623. | [66] | Knights AJ, Yik JJ, Mat JH, Norton LJ, Funnell AP, Pearson RC, Bell-Anderson KS, Crossley M, Quinlan KG . Krüppel-like Factor 3 (KLF3/BKLF) is required for widespread repression of the inflammatory modulator Galectin-3 (Lgals3). J Biol Chem, 2016,291(31):16048-16058. | [67] | Parakati R, Dimario JX . Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein. J Biol Chem, 2013,288(19):13876-13884. | [68] | Miyake M, Hayashi S, Iwasaki S, Uchida T, Watanabe K, Ohwada S, Aso H, Yamaguchi T . TIEG1 negatively controls the myoblast pool indispensable for fusion during myogenic differentiation of C2C12 cells. J Cell Physiol, 2011,226(4):1128-1136. | [69] | Kammoun M, Pouletaut P, Canon F, Subramaniam M, Hawse JR, Vayssade M, Bensamoun SF . Impact of tieg1 deletion on the passive mechanical properties of fast and slow twitch skeletal muscles in female mice. PLoS One, 2016,11(10):e164566. | [70] | Wang J, Chen T, Feng F, Wei H, Pang WJ, Yang GS, Shen QW . KLF15 regulates slow myosin heavy chain expression through NFATc1 in C2C12 myotubes. Biochem Biophys Res Commun, 2014,446(4):1231-1236. | [71] | Haldar SM, Jeyaraj D, Anand P, Zhu H, Lu Y, Prosdocimo DA, Eapen B, Kawanami D, Okutsu M, Brotto L, Fujioka H, Kerner J, Rosca MG, Mcguinness OP, Snow RJ, Russell AP, Gerber AN, Bai X, Yan Z, Nosek TM, Brotto M, Hoppel CL, Jain MK . Krüppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation. Proc Natl Acad Sci USA, 2012,109(17):6739-6744. | [72] | Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H . Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab, 2011,13(2):170-182. | [73] | Im SS, Kwon SK, Kim TH, Kim HI, Ahn YH . Regulation of glucose transporter type 4 isoform gene expression in muscle and adipocytes. IUBMB Life, 2007,59(3):134-145. | [74] | Yamamoto J, Ikeda Y, Iguchi H, Fujino T, Tanaka T, Asaba H, Iwasaki S, Ioka RX, Kaneko IW, Magoori K, Takahashi S, Mori T, Sakaue H, Kodama T, Yanagisawa M, Yamamoto TT, Ito S, Sakai J . A Krüppel-like factor KLF15 contributes fasting-induced transcriptional activation of mitochondrial acetyl-CoA synthetase gene AceCS2. J Biol Chem, 2004,279(17):16954-16962. | [75] | Zhao ZD, Zan LS, Li AN, Cheng G, Li SJ, Zhang YR, Wang XY, Zhang YY . Characterization of the promoter region of the bovine long-chain acyl-CoA synthetase 1 gene: Roles of E2F1, Sp1, KLF15, and E2F4. Sci Rep, 2016,6:19661. |
|