[1] | Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, Carson SA, Cisneros P, Steinkampf MP, Hill JA, Xu D, Vogel DL . Sperm morphology, motility, and concentration in fertile and infertile men. New Engl J Med, 2001,345(19):1388-1393. | [2] | Dacheux J, Voglmayr J . Sequence of sperm cell surface differentiation and its relationship to exogenous fluid proteins in the ram epididymis. Biol Reprod, 1983,29(4):1033-1046. | [3] | Gatti JL, Castella S, Dacheux F, Ecroyd H, Métayer S, Thimon V, Dacheux JL. Post-testicular sperm environment and fertility. Anim Reprod Sci, 2004, 82-83:321-339. | [4] | Caballero J, Frenette G, Sullivan R . Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int, 2010,2011:757194. | [5] | Yanagimachi R, Kamiguchi Y, Mikamo K, Suzuki F, Yanagimachi H . Maturation of spermatozoa in the epididymis of the Chinese hamster. Devel Dyn, 1985,172(4):317-330. | [6] | Sullivan R, Saez F, Girouard J, Frenette G . Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cell Mol Dis, 2005,35(1):1-10. | [7] | Sullivan R, Saez F . Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction, 2013,146(1):R21-R35. | [8] | Sullivan R, Frenette G, Girouard J . Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl, 2007,9(4):483-491. | [9] | Martin-DeLeon PA . Epididymosomes: transfer of fertility- modulating proteins to the sperm surface. Asian J Androl, 2015,17(5):720-725. | [10] | Bajpai V, Shipstone A, Ratna KB, Qaisar J, Setty B . Ultrastructure of the epididymal epithelium of rhesus monkey (Macaca mulatta). Acta Eur Fertil, 1984,16(3):207-217. | [11] | AGRAWAL Y, VANHA-PERTTULA T . Electron microscopic study of the secretion process in bovine reproductive organs. J Androl, 1988,9(5):307-316. | [12] | Frenette G, Lessard C, Sullivan R . Selected proteins of “prostasome-like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod, 2002,67(1):308-313. | [13] | Frenette G, Sullivan R . Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol Reprod Dev, 2001,59(1):115-121. | [14] | Hermo L, Adamali HI, Andonian S . Immunolocalization of CA II and H^+ V-ATPase in epithelial cells of the mouse and rat epididymis. J Androl, 2000,21(3):376-391. | [15] | Fornés M, Barbieri A, Cav |
[1] |
田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764. |
[2] |
吴丹丹, 朱明昆, 方忠艳, 马伟. 植物B染色体的分子结构组成及遗传机制研究进展[J]. 遗传, 2022, 44(9): 772-782. |
[3] |
朱艳, 魏明, 周晓, 邓林华, 仇剑, 李果, 周世强, 谢浩, 李德生, 王承东. 大熊猫(Ailuropoda melanoleuca) miRNA研究进展[J]. 遗传, 2021, 43(9): 849-857. |
[4] |
马剑峰, 甘麦邻, 朱砺, 沈林園. 转运RNA衍生的小RNA功能及其研究方法[J]. 遗传, 2021, 43(12): 1107-1120. |
[5] |
肇涛澜, 张硕, 钱文峰. 翻译延伸的顺式调控机理与生物学效应[J]. 遗传, 2020, 42(7): 613-631. |
[6] |
于雅洁, 邱峰, 张新安. TSR1突变导致先天性白内障及其在晶状体中的表达[J]. 遗传, 2020, 42(2): 161-171. |
[7] |
魏勇, 何玉兰, 郑学礼. RNAi在抗蚊媒病毒感染中的研究进展[J]. 遗传, 2020, 42(2): 153-160. |
[8] |
吕丹丹,张媛雅,葛海涛,黄夏禾,汪迎春. 大规模膜蛋白质组鉴定技术进展[J]. 遗传, 2019, 41(9): 863-874. |
[9] |
饶琳, 孟飞龙, 房冉, 蔡晨依, 赵小立. MicroRNA调控耳蜗毛细胞发育的分子机制[J]. 遗传, 2019, 41(11): 994-1008. |
[10] |
夏蒙蒙,申雪沂,牛长敏,夏静,孙红亚,郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能[J]. 遗传, 2018, 40(9): 724-732. |
[11] |
刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[12] |
胡立桥,周兆才,田伟. Hippo信号通路结构生物学研究进展[J]. 遗传, 2017, 39(7): 659-674. |
[13] |
李新云, 付亮亮, 程会军, 赵书红. MicroRNA调控哺乳动物骨骼肌发育[J]. 遗传, 2017, 39(11): 1046-1053. |
[14] |
刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[15] |
魏俊,陆秀君,张晓林,梅梅,黄晓丽. MicroRNA在种子发育、休眠与萌发过程中的作用[J]. 遗传, 2017, 39(1): 14-21. |
|