[1] | Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, Carson SA, Cisneros P, Steinkampf MP, Hill JA, Xu D, Vogel DL . Sperm morphology, motility, and concentration in fertile and infertile men. New Engl J Med, 2001,345(19):1388-1393. | [2] | Dacheux J, Voglmayr J . Sequence of sperm cell surface differentiation and its relationship to exogenous fluid proteins in the ram epididymis. Biol Reprod, 1983,29(4):1033-1046. | [3] | Gatti JL, Castella S, Dacheux F, Ecroyd H, Métayer S, Thimon V, Dacheux JL. Post-testicular sperm environment and fertility. Anim Reprod Sci, 2004, 82-83:321-339. | [4] | Caballero J, Frenette G, Sullivan R . Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int, 2010,2011:757194. | [5] | Yanagimachi R, Kamiguchi Y, Mikamo K, Suzuki F, Yanagimachi H . Maturation of spermatozoa in the epididymis of the Chinese hamster. Devel Dyn, 1985,172(4):317-330. | [6] | Sullivan R, Saez F, Girouard J, Frenette G . Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cell Mol Dis, 2005,35(1):1-10. | [7] | Sullivan R, Saez F . Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction, 2013,146(1):R21-R35. | [8] | Sullivan R, Frenette G, Girouard J . Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl, 2007,9(4):483-491. | [9] | Martin-DeLeon PA . Epididymosomes: transfer of fertility- modulating proteins to the sperm surface. Asian J Androl, 2015,17(5):720-725. | [10] | Bajpai V, Shipstone A, Ratna KB, Qaisar J, Setty B . Ultrastructure of the epididymal epithelium of rhesus monkey (Macaca mulatta). Acta Eur Fertil, 1984,16(3):207-217. | [11] | AGRAWAL Y, VANHA-PERTTULA T . Electron microscopic study of the secretion process in bovine reproductive organs. J Androl, 1988,9(5):307-316. | [12] | Frenette G, Lessard C, Sullivan R . Selected proteins of “prostasome-like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod, 2002,67(1):308-313. | [13] | Frenette G, Sullivan R . Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol Reprod Dev, 2001,59(1):115-121. | [14] | Hermo L, Adamali HI, Andonian S . Immunolocalization of CA II and H^+ V-ATPase in epithelial cells of the mouse and rat epididymis. J Androl, 2000,21(3):376-391. | [15] | Fornés M, Barbieri A, Cavicchia J . Morphological and enzymatic study of membrane-bound vesicles from the lumen of the rat epididymis. Andrologia, 1995,27(1):1-5. | [16] | Eickhoff R, Wilhelm B, Renneberg H, Wennemuth G, Bacher M, Linder D, Bucala R, Seitz J, Meinhardt A . Purification and characterization of macrophage migration inhibitory factor as a secretory protein from rat epididymis: evidences for alternative release and transfer to spermatozoa. Mol Med, 2001,7(1):27-35. | [17] | Morales A, Cavicchia J . Release of cytoplasmic apical protrusions from principal cells of the cat epididymis, an electron microscopic study. Tiss Cell, 1991,23(4):505-513. | [18] | Schiefferdecker P . Die Hautdrüsen des Menschen und der S?ugetiere, ihre biologische und rassenanatomische Bedeutung sowie die Muscularis sexualis. Naturwissenschaften, 1923,11(44):895-896. | [19] | Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun FL, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Moore R, Mello CC, Garber M, Rando OL . Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science, 2016,351(6271):391-396. | [20] | Belleannée C, Calvo é, Caballero J, Sullivan R . Epididymosomes convey different repertoires of micrornas throughout the bovine epididymis. Biol Reprod, 2013,89(2):30. | [21] | Reilly JN, Mclaughlin EA, Stanger SJ, Anderson AL, Hutcheon K, Church K, Mihalas BP, Tyagi S, Holt JE, Eamens AL, Nixon B . Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep, 2016,6:31794. | [22] | Zhou SC, Ni Y, Shi QX . ADAMs involved in mammalian sperm-egg plasma membrane adhesion and fusion. Life Sci, 2005,17(4):323-327. | [22] | 周思畅, 倪崖, 石其贤 . ADAMs 参与哺乳动物精-卵结合与融合. 生命科学, 2005,17(4):323-327. | [23] | Martin-DeLeon PA. Epididymal SPAM1 and its impact on sperm function.Mol Cell Endocrinol, 2006, 250(1-2):114-121. | [24] | Kobayashi T, Kaneko T, Iuchi Y, Matsuki S, Takahashi M, Sasagawa I, Nakada T, Fujii J . Localization and physiological implication of aldose reductase and sorbitol dehydrogenase in reproductive tracts and spermatozoa of male rats. J Androl, 2002,23(5):674-684. | [25] | Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Thompson WE, Schatten G . A putative, ubiquitin- dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci, 2001,114(9):1665-1675. | [26] | Griffiths GS, Galileo DS, Reese K, Martin-Deleon PA . Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev, 2008,75(11):1627-1636. | [27] | Noblanc A, Peltier M, Damon-Soubeyrand C, Kerchkove N, Chabory E, Vernet P, Saez F, Cadet R, Janny L, Pons-Rejraji H, Conrad M, Drevet JR, Kocer A . Epididymis response partly compensates for spermatozoa oxidative defects in snGPx4 and GPx5 double mutant mice. PLoS One, 2012,7(6):e38565. | [28] | Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J, Schoor M, Gottwald U, Habenicht U, Drevet JR, Vernet P . Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest, 2009,119(7):2074. | [29] | Dong LH, Rang ML, Li Z, Peng FZ, Chen B . The role of ubiquitin-proteasome pathway in spermatogenesis. Hereditas (Beijing), 2016,38(9):791-800. | [29] | 董莲花, 冉茂良, 李智, 彭馥芝, 陈斌 . 泛素-蛋白酶体途径在精子生成中的作用. 遗传, 2016,38(9):791-800. | [30] | Curry E, Safranski TJ, Pratt SL . Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology, 2011,76(8):1532-1539. | [31] | Belleannée C, Légaré C, Calvo é, Thimon V , Sullivan R. microRNA signature is altered in both human epididymis and seminal microvesicles following vasectomy. Hum Reprod, 2013,28(6):1455-1467. | [32] | Ma WB, Xie SS, Ni MJ, Huang XX, Hu SG, Liu Q, Liu AH, Zhang JS, Zhang YL . MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem, 2012,287(13):10189-10199. | [33] | Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE . MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med, 2013,5(7):1017-1034. | [34] | Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM , Chen CZ. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell, 2007,129(1):147-161. | [35] | Reilly JN , McLaughlin EA, Stanger SJ, Anderson AL, Hutcheon K, Church K, Mihalas BP, Tyagi S, Holt JE, Eamens AL, Nixon B. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep, 2016,6:31794. | [36] | Lin YC, Kuo MW, Yu J, Kuo HH, Lin RJ, Lo WL , Yu AL. c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Mol Biol Evol, 2008,25(10):2189-2198. | [37] | Wystub K, Besser J, Bachmann A, Boettger T , Braun T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet, 2013,9(9):e1003793. | [38] | Girouard J, Frenette G, Sullivan R . Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. Int J Androl, 2011,34(5 Pt 2):e475-e486. | [39] | Eickhoff R, Baldauf C, Koyro HW, Wennemuth G, Suga Y, Seitz J, Henkel R, Meinhardt A . Influence of macrophage migration inhibitory factor (MIF) on the zinc content and redox state of protein-bound sulphydryl groups in rat sperm: indications for a new role of MIF in sperm maturation. Mol Human Reprod, 2004,10(8):605-611. | [40] | Frenette G, Lessard C, Madore E, Fortier MA, Sullivan R . Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol Reprod, 2003,69(5):1586-1592. | [41] | Frenette G, Thabet M, Sullivan R . Polyol pathway in human epididymis and semen. J Androl, 2006,27(2):233-239. | [42] | Frenette G, Légaré C, Saez F, Sullivan R . Macrophage migration inhibitory factor in the human epididymis and semen. Mol Human Reprod, 2005,11(8):575-582. | [43] | Thimon V, Frenette G, Saez F, Thabet M, Sullivan R . Protein composition of human epididymosomes collected during surgical vasectomy reversal: a proteomic and genomic approach. Hum Reprod, 2008,23(8):1698-1707. | [44] | Ho HC, Granish KA, Suarez SS . Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2 + and not cAMP . Dev Biol, 2002,250(1):208-217. | [45] | Al-Dossary AA, Strehler EE, Martin-Deleon PA . Expression and secretion of plasma membrane Ca2 +- ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm . PLoS One, 2013,8(11):e80181. | [46] | Chen ZL, Feng MY, Chen YM, Wei HX, Li L, Wu TS, Zhang SQ . The progress of sperm functional proteins regulating the process of fertilization. Hereditas (Beijing), 2014,36(8):747-755. | [46] | 陈志林, 冯美莹, 陈预明, 卫恒习, 李莉, 吴同山, 张守全 . 精子功能相关的蛋白质调控受精过程的研究进展. 遗传, 2014,36(8):747-755. | [47] | Oh JS, Han C, Cho C . ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane. Mol Cells, 2009,28(5):441-446. | [48] | Ensslin MA, Shur BD . Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell, 2003,114(4):405-417. | [49] | Théry C, Ostrowski M, Segura E . Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 2009,9(8):581-593. | [50] | Raymond AS, Elder B, Ensslin M, Shur BD . Loss of SED1/MFG-E8 results in altered luminal physiology in the epididymis. Mol Reprod Dev, 2010,77(6):550-563. | [51] | Ensslin MA, Shur BD . The EGF repeat and discoidin domain protein, SED1/MFGE8, is required for mammary gland branching morphogenesis. Proc Natl Acad Sci USA, 2007,104(8):2715-2720. | [52] | Shur BD, Ensslin MA, Rodeheffer C . SED1 function during mammalian sperm-egg adhesion. Curr Opin Cell Biol, 2004,16(5):477-485. | [53] | Raymond AS, Shur BD . A novel role for SED1 (MFGE8) in maintaining the integrity of the epididymal epithelium. J Cell Sci, 2009,122(6):849-858. | [54] | Hoffhines AJ, Jen CH, Leary JA, Moore KL . Tyrosylprotein sulfotransferase-2 expression is required for sulfation of RNase 9 and Mfge8 in vivo. J Biol Chem, 2009,284(5):3096-3105. | [55] | Chen H, Griffiths G, Galileo DS , Martin-DeLeon PA. Epididymal SPAM1 is a marker for sperm maturation in the mouse. Biol Reprod, 2006,74(5):923-930. | [56] | Boué F, Sullivan R . Cases of human infertility are associated with the absence of P34H an epididymal sperm antigen. Biol Reprod, 1996,54(5):1018-1024. | [57] | Joshi CS, Suryawanshi AR, Khan SA, Balasinor NH, Khole VV . Liprin alpha3: a putative estrogen regulated acrosomal protein. Histochem Cell Biol, 2013,139(4):535-548. | [58] | Joshi CS, Khan SA, Khole VV . Regulation of acrosome reaction By Liprin α3, LAR and its ligands in mouse spermatozoa. Andrology, 2014,2(2):165-174. | [59] | Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, Nakanishi T, Kashiwabara S, Baba T . Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol Reprod, 2009,81(5):939-947. | [60] | Krapf D, Ruan YC, Wertheimer EV, Battistone MA, Pawlak JB, Sanjay A, Pilder SH, Cuasnicu P, Breton S , Visconti PE. cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit. Dev Biol, 2012,369(1):43-53. | [61] | Caballero J, Frenette G , D'Amours O, Belleannée C, Lacroix-Pepin N, Robert C, Sullivan R. Bovine sperm raft membrane associated Glioma Pathogenesis-Related 1-like protein 1 (GliPr1L1) is modified during the epididymal transit and is potentially involved in sperm binding to the zona pellucida. J Cell Physiol, 2012,227(12):3876-3886. | [62] | Gibbs GM, Lo JCY, Nixon B, Jamsai D , O'Connor AE, Rijal S, Sanchez-Partida LG, Hearn MTW, Bianco DM, O'Bryan MK. Glioma pathogenesis-related 1-like 1 is testis enriched, dynamically modified, and redistributed during male germ cell maturation and has a potential role in sperm-oocyte binding. Endocrinology, 2010,151(5):2331-2342. | [63] | D'Amours O , Frenette G, Bordeleau LJ, Allard N, Leclerc P, Blondin P, Sullivan R. Epididymosomes transfer epididymal sperm binding protein 1 (ELSPBP1) to dead spermatozoa during epididymal transit in bovine. Biol Reprod, 2012,87(4):94. | [64] | Sullivan R . Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J Androl, 2015,17(5):726-729. | [65] | Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297. | [66] | Ran ML, Chen B, Yin J, Yang AQ, Jiang M . Advances in miRNA research related to testis development and spermatogenesis. Hereditas (Beijing), 2014,36(7):646-654. | [66] | 冉茂良, 陈斌, 尹杰, 杨岸奇, 蒋明 . 睾丸发育和精子生成相关miRNA研究进展. 遗传, 2014,36(7):646-654. | [67] | Chen Q, Yan W, Duan E . Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet, 2016,17(12):733-743. | [68] | Rajender S, Meador C, Agarwal A . Small RNA in spermatogenesis and male infertility. Front Biosci (Schol Ed), 2012,4:1266-1274. | [69] | Huang HN, Chen SY, Hwang SM, Yu CC, Su MW, Mai W, Wang HW, Cheng WC, Schuyler SC, Ma NH, Lu FL , Lu J. miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation. Stem Cell Res, 2014,12(2):338-353. | [70] | Liu P, Xiang DJ, Wang CB . Male genital tract infection and inflammation and male infertility. Clinical Laboratory Journal (Electronic Edition), 2015,4(2):867-871. | [70] | 刘萍, 向代军, 王成彬 . 泌尿生殖道感染及炎症与男性不育. 临床检验杂志: 电子版, 2015,4(2):867-871. | [71] | Niu YN, Mo DL, Qin LM, Wang C, Li AN, Zhao X, Wang XY, Xiao SQ, Wang QW, Xie Y, He ZY, Cong PQ, Chen YS . Lipopolysaccharide-induced miR-1224 negatively regulates tumour necrosis factor-α gene expression by modulating Sp1. Immunology, 2011,133(1):8-20. | [72] | Chen Q, Yan MH, Cao HZ, Li X, Zhang YF, Shi JC, Feng GH, Peng HY, Zhang XD, Zhang Y, Qian JJ, Duan EK, Zhai QW, Zhou Q . Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science, 2016,351(6271):397-400. | [73] | Madison MN, Roller RJ, Okeoma CM . Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology, 2014,11(1):102. | [74] | Madison MN, Jones PH, Okeoma CM . Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex. Virology, 2015,482:189-201. | [75] | Marchand A, Proust C, Morange PE, Lompré AM , Trégou?t D-A. miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PloS One, 2012,7(8):e44532. | [76] | Hu HY, He L, Fominykh K, Yan Z, Guo S, Zhang XY, Taylor MS, Tang L, Li J, Liu JM, Wang W, Yu HJ, Khaitovich P . Evolution of the human-specific microRNA miR-941. Nat Commun, 2012,3:1145. |
|