[1] | Dang DT, Zhao WD, Mahatan CS, Geiman DE, Yang VW . Opposing effects of Krüppel-like factor 4 (gut-enriched Kruppel-like factor) and Krüppel-like factor 5 (intestinal- enriched Krüppel-like factor) on the promoter of the Krüppel-like factor 4 gene. Nucleic Acids Res, 2002,30(13):2736-2741. | [2] | Presnell JS, Schnitzler CE, Browne WE . KLF/SP transcription factor family evolution: xxpansion, diversification, and innovation in Eukaryotes. Genome Biol Evol, 2015,7(8):2289-2309. | [3] | Pollak NM, Hoffman M, Goldberg IJ, Drosatos K . Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci, 2018,3(1):132-156. | [4] | Zhang ZW, Li H, Wang N . Krüppel-like Factors(KLFs) and adipocyte differentiation. Chin J Biochem Mol Biol, 2009,25(11):983-990. | [4] | 张志威, 李辉, 王宁 . KLF转录因子家族与脂肪细胞分化. 中国生物化学与分子生物学报, 2009(11):983-990. | [5] | Lavallee G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME, Nemer M . The Krüppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J, 2006,25(21):5201-5213. | [6] | Darwich R, Li W, Yamak A, Komati H, Andelfinger G, Sun K, Nemer M . KLF13 is a genetic modifier of the Holt- Oram syndrome gene TBX5. Hum Mol Genet, 2017,26(5):942-954. | [7] | Xiong Q, Ruan XY, Fang XD . Progress on Sp1-like and Krüppel-like factors. Hereditas(Beijing), 2010,32(6):531-538. | [7] | 熊倩, 阮修艳, 方向东 . Sp1/Krüppel样因子的研究进展. 遗传, 2010,32(6):531-538. | [8] | Yu K, Zheng B, Han M, Wen JK . ATRA activates and PDGF-BB represses the SM22alpha promoter through KLF4 binding to, or dissociating from, its cis-DNA elements. Cardiovasc Res, 2011,90(3):464-474. | [9] | Shyu KG, Cheng WP, Wang BW . Angiotensin II downregulates microRNA-145 to regulate Krüppel-like Factor 4 and myocardin expression in human coronary arterial smooth muscle cells under high glucose conditions. Mol Med, 2015,21(1):616-625. | [10] | Kim CK, He P, Bialkowska AB, Yang VW . SP and KLF transcription factors in digestive physiology and diseases. Gastroenterology, 2017,152(8):1845-1875. | [11] | Heineke J, Molkentin JD . Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol, 2006,7(8):589-600. | [12] | Yoshida T, Yamashita M, Horimai C, Hayashi M . Krüppel- like factor 4 protein regulates isoproterenol-induced cardiac hypertrophy by modulating myocardin expression and activity. J Biol Chem, 2014,289(38):26107-26118. | [13] | Sawaki D, Hou L, Tomida S, Sun J, Zhan H, Aizawa K, Son BK, Kariya T, Takimoto E, Otsu K, Conway SJ, Manabe I, Komuro I, Friedman SL, Na |
[1] |
舒甜, 胡豪畅, 沈才杰, 林少沂, 陈晓敏. 肥厚型心肌病基因型-表型关联研究进展[J]. 遗传, 2022, 44(3): 198-207. |
[2] |
任恋, 吴秀山, 李永青. 组蛋白去乙酰化酶在调节心肌肥大过程中的作用机制[J]. 遗传, 2020, 42(6): 536-547. |
[3] |
郑婷, 甘麦邻, 沈林園, 牛丽莉, 郭宗义, 王金勇, 张顺华, 朱砺. circRNA及其调控动物骨骼肌发育研究进展[J]. 遗传, 2020, 42(12): 1178-1191. |
[4] |
甘炎民,周健,全绒,洪林君,李紫聪,郑恩琴,刘德武,吴珍芳,蔡更元,顾婷. 组蛋白H3K27me3对骨骼肌发育调控研究进展[J]. 遗传, 2019, 41(4): 285-292. |
[5] |
黄子莹, 李龙, 李倩倩, 刘向东, 李长春. lncRNA TCONS_00815878对猪骨骼肌卫星细胞分化的影响[J]. 遗传, 2019, 41(12): 1119-1128. |
[6] |
朱艳, 张进威, 齐婧, 李学伟, 陈磊, 李明洲, 马继登. Myomaker和Myomerger调控成肌细胞融合的分子机制[J]. 遗传, 2019, 41(12): 1110-1118. |
[7] |
周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[8] |
李俊涛,赵薇,李丹丹,冯静,巴贵,宋天增,张红平. miR-101a靶向EZH2促进山羊骨骼肌卫星细胞的分化[J]. 遗传, 2017, 39(9): 828-836. |
[9] |
王永煜,余薇,周斌. Hippo信号通路与心血管发育及疾病调控[J]. 遗传, 2017, 39(7): 576-587. |
[10] |
李新云, 付亮亮, 程会军, 赵书红. MicroRNA调控哺乳动物骨骼肌发育[J]. 遗传, 2017, 39(11): 1046-1053. |
[11] |
刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[12] |
赵跃, 张宏, 夏雪山. 下一代半导体测序技术在遗传性心肌病分子诊断中的应用[J]. 遗传, 2015, 37(7): 635-644. |
[13] |
侯宁,王剑,李振华,曹阳,范开吉,杨晓. 心肌细胞过表达miR-27b导致小鼠发生心肌纤维化和线粒体损伤[J]. 遗传, 2012, 34(3): 326-334. |
[14] |
宋艳瑞,刘忠,顾淑莲,钱丽娟,严庆丰. 肥厚型心肌病的致病分子机制研究进展[J]. 遗传, 2011, 33(6): 549-557. |
[15] |
甄一松,惠汝太,熊敬维. 心脏的再生性研究进展[J]. 遗传, 2011, 33(11): 1159-1163. |
|