| [1] | Wang KC, Chang HY . Epigenomics: technologies and applications . Circ Res, 2018,122(9):1191-1199. | | [2] | Rivera CM, Ren B . Mapping human epigenomes . Cell, 2013,155(1):39-55. | | [3] | Xu Q, Xie W . Epigenome in early mammalian developpment: inheritance, reprogramming and establishment . Trends Cell Biol, 2018,28(3):237-253. | | [4] | Dean W, Lucifero D, Santos F . DNA methylation in mammalian development and disease . Birth Defects Res C Embryo Today, 2005,75(2):98-111. | | [5] | Marcho C, Cui W, Mager J . Epigenetic dynamics during preimplantation development . Reproduction, 2015,150(3):R109-120. | | [6] | Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR . Human DNA methylomes at base resolution show widespread epigenomic differences . Nature, 2009,462(7271):315-322. | | [7] | Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR . Global epigenomic reconfiguration during mammalian brain development . Science, 2013,341(6146):1237905. | | [8] | Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B . Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome . Cell, 2012,148(4):816-831. | | [9] | Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE . Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state . Nat Biotechnol, 2015,33(11):1165-1172. | | [10] | Brind'amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC . An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations . Nat Commun, 2015,6:6033. | | [11] | Shankaranarayanan P, Mendoza-Parra MA, Walia M, Wang L, Li N, Trindade LM, Gronemeyer H . Single-tube linear DNA amplification (LinDA) for robust ChIP-seq . Nat Methods, 2011,8(7):565-567. | | [12] | Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I . Immunogenetics chromatin state dynamics during blood formation . Science, 2014,345(6199):943-949. | | [13] | Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ . Single-cell chromatin accessibility reveals principles of regulatory variation . Nature, 2015,523(7561):486-490. | | [14] | Buenrostro JD, Wu B, Chang HY , Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol |
| [1] |
安赛男, 杨欢淳, 姜姗, 李靖轩, 张根发. 融入生物信息学分析的综合性探究型表观遗传学实验设计与探索[J]. 遗传, 2025, 47(5): 600-608. |
| [2] |
刘岱缘, 张朝晖, 康现江. 精子染色质完整性对功能的影响及其检测方法研究进展[J]. 遗传, 2024, 46(7): 511-529. |
| [3] |
沈院, 李金涛, 尹淼, 雷群英. 支链氨基酸代谢在肿瘤发生发展中的作用[J]. 遗传, 2024, 46(6): 438-451. |
| [4] |
孙朝冉, 吴旭东. 组蛋白变体H2A.Z的转录调控功能与动态作用机制[J]. 遗传, 2024, 46(4): 279-289. |
| [5] |
朱奕, 陈雪沁, 冷丽智, 林戈. 早期胚胎极性建立及对谱系分化的影响[J]. 遗传, 2024, 46(3): 199-208. |
| [6] |
阙亦宸, 刘清泉, 徐一驰. 人类发育细胞蓝图的现状和挑战[J]. 遗传, 2024, 46(10): 760-778. |
| [7] |
王艳妮, 李佳. 单细胞DNA甲基化测序数据处理流程与分析方法[J]. 遗传, 2024, 46(10): 807-819. |
| [8] |
王文龙, 张春霞. 哺乳动物卵子与早期胚胎中全转录组poly(A)尾研究进展[J]. 遗传, 2023, 45(4): 273-278. |
| [9] |
欧秀芳, 吴莹, 李宁, 姜丽丽, 刘宝, 宫磊. 基于科教融合培养大学生拔尖创新能力的表观遗传学综合实验课程[J]. 遗传, 2023, 45(12): 1158-1168. |
| [10] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
| [11] |
王梓川, 张嘉祺, 李磊. 哺乳动物早期胚胎发育的体外研究[J]. 遗传, 2022, 44(4): 269-274. |
| [12] |
曲卉, 柳毅, 陈雅文, 汪晖. 环境因素所致印迹基因改变与子代器官发育[J]. 遗传, 2022, 44(2): 107-116. |
| [13] |
张杨景晖, 常沛瑶, 杨紫淑, 薛宇航, 李雪奇, 张旸. 表观遗传修饰影响花青苷合成研究进展[J]. 遗传, 2022, 44(12): 1117-1127. |
| [14] |
赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展[J]. 遗传, 2022, 44(10): 867-880. |
| [15] |
何江平, 陈捷凯. 转座元件、表观遗传调控与细胞命运决定[J]. 遗传, 2021, 43(9): 822-834. |
|