[1] | Wang KC, Chang HY . Epigenomics: technologies and applications . Circ Res, 2018,122(9):1191-1199. | [2] | Rivera CM, Ren B . Mapping human epigenomes . Cell, 2013,155(1):39-55. | [3] | Xu Q, Xie W . Epigenome in early mammalian developpment: inheritance, reprogramming and establishment . Trends Cell Biol, 2018,28(3):237-253. | [4] | Dean W, Lucifero D, Santos F . DNA methylation in mammalian development and disease . Birth Defects Res C Embryo Today, 2005,75(2):98-111. | [5] | Marcho C, Cui W, Mager J . Epigenetic dynamics during preimplantation development . Reproduction, 2015,150(3):R109-120. | [6] | Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR . Human DNA methylomes at base resolution show widespread epigenomic differences . Nature, 2009,462(7271):315-322. | [7] | Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR . Global epigenomic reconfiguration during mammalian brain development . Science, 2013,341(6146):1237905. | [8] | Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B . Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome . Cell, 2012,148(4):816-831. | [9] | Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE . Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state . Nat Biotechnol, 2015,33(11):1165-1172. | [10] | Brind'amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC . An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations . Nat Commun, 2015,6:6033. | [11] | Shankaranarayanan P, Mendoza-Parra MA, Walia M, Wang L, Li N, Trindade LM, Gronemeyer H . Single-tube linear DNA amplification (LinDA) for robust ChIP-seq . Nat Methods, 2011,8(7):565-567. | [12] | Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I . Immunogenetics chromatin state dynamics during blood formation . Science, 2014,345(6199):943-949. | [13] | Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ . Single-cell chromatin accessibility reveals principles of regulatory variation . Nature, 2015,523(7561):486-490. | [14] | Buenrostro JD, Wu B, Chang HY , Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol, 2015, 109: 21 29. 1-9. | [15] | Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, Steemers FJ, Trapnell C, Shendure J . Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing . Science, 2015,348(6237):910-914. | [16] | Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ . Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA- binding proteins and nucleosome position . Nat Methods, 2013,10(12):1213-1218. | [17] | Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G, Ni B, Sklar J, Przytycka TM, Childs R, Levens D, Zhao K . Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples . Nature, 2015,528(7580):142-146. | [18] | Song L , Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc, 2010, 2010(2): pdb. prot5384. | [19] | John S, Sabo PJ, Canfield TK, Lee K, Vong S, Weaver M, Wang H, Vierstra J, Reynolds AP, Thurman RE , Stamatoyannopoulos JA. Genome-scale mapping of DNase I hypersensitivity . Curr Protoc Mol Biol, 2013, Chapter 27: Unit 21. 27. | [20] | John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA . Chromatin accessibility pre-determines glucocorticoid receptor binding patterns . Nat Genet, 2011,43(3):264-268. | [21] | Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J . Comprehensive mapping of long-range interactions reveals folding principles of the human genome . Science, 2009,326(5950):289-293. | [22] | Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping . Cell, 2014,159(7):1665-1680. | [23] | Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P . Single-cell Hi-C reveals cell-to-cell variability in chromosome structure . Nature, 2013,502(7469):59-64. | [24] | Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W O'shaughnessy- Kirwan A, Cramard J, Faure AJ, Ralser M, Blanco E, Morey L, Sanso M, Palayret MGS, Lehner B, Di Croce L, Wutz A, Hendrich B, Klenerman D, Laue ED. 3D structures of individual mammalian genomes studied by single-cell Hi-C . Nature, 2017,544(7648):59-64. | [25] | Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, Noble WS, Duan Z, Shendure J . Massively multiplex single-cell Hi-C . Nat Methods, 2017,14(3):263-266. | [26] | Ci W, Liu J . Programming and inheritance of parental DNA methylomes in vertebrates . Physiology (Bethesda), 2015,30(1):63-68. | [27] | Smith ZD, Meissner A . DNA methylation: roles in mammalian development . Nat Rev Genet, 2013,14(3):204-220. | [28] | Deng D . DNA methylation and demethylation: current status and future per-spective. Hereditas (Beijing) ,2014, 36(5):403-410. | [28] | 邓大军 . DNA甲基化和去甲基化的研究现状及思考. 遗传, 2014,36(5):403-410. | [29] | Boyle AP, Song L, Lee BK, London D, Keefe D, Birney E, Iyer VR, Crawford GE, Furey TS . High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells . Genome Res, 2011,21(3):456-464. | [30] | Henikoff S . Nucleosome destabilization in the epigenetic regulation of gene expression . Nat Rev Genet, 2008,9(1):15-26. | [31] | Tsompana M, Buck MJ . Chromatin accessibility: a window into the genome . Epig Chrom, 2014,7(1):33. | [32] | Lu F, Liu Y, Inoue A, Suzuki T, Zhao K, Zhang Y . Establishing chromatin regulatory landscape during mouse preimplantation development . Cell, 2016,165(6):1375-1388. | [33] | Gao L, Wu K, Liu Z, Yao X, Yuan S, Tao W, Yi L, Yu G, Hou Z, Fan D, Tian Y, Liu J, Chen ZJ , Liu J.Chromatin accessibility landscape in human early embryos and its association with evolution . Cell, 2018, 173(1): 248- 259. e15. | [34] | Niakan KK, Han J, Pedersen RA, Simon C, Pera RA . Human pre-implantation embryo development . Development, 2012,139(5):829-841. | [35] | Jung YH, Sauria ME, Lyu X, Cheema MS, Ausio J, Taylor J, Corces VG , Yang YG.ates in mouse sperm correlate with embryonic and adult regulatory landscapes . Cell Rep, 2017,18(6):1366-1382. | [36] | Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, Zhang B, Liu B, Wang Q, Xia W, Li W, Li Y, Ma J, Peng X, Zheng H, Ming J, Zhang W, Zhang J, Tian G, Xu F, Chang Z, Na J, Yang X, Xie W . The landscape of accessible chromatin in mammalian preimplantation embryos . Nature, 2016,534(7609):652-657. | [37] | Wu J, Xu J, Liu B, Yao G, Wang P, Lin Z, Huang B, Wang X, Li T, Shi S, Zhang N, Duan F, Ming J, Zhang X, Niu W, Song W, Jin H, Guo Y, Dai S, Hu L, Fang L, Wang Q, Li Y, Li W, Na J, Xie W, Sun Y . Chromatin analysis in human early development reveals epigenetic transition during ZGA . Nature, 2018,557(7704):256-260. | [38] | Fogarty NME, Mccarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, Lea R, Elder K, Wamaitha SE, Kim D, Maciulyte V, Kleinjung J, Kim JS, Wells D, Vallier L, Bertero A, Turner JMA, Niakan KK . Genome editing reveals a role for OCT4 in human embryogenesis . Nature, 2017,550(7674):67-73. | [39] | Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, Vonrhein C, Moras D, Romier C, Bolognesi M, Mantovani R . Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination . Cell, 2013,152(1-2):132-143. | [40] | Cordaux R, Batzer MA . The impact of retrotransposons on human genome evolution . Nat Rev Genet, 2009,10(10):691-703. | [41] | Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, Martin L, Ware CB, Blish CA, Chang HY, Pera RA, Wysocka J . Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells . Nature, 2015,522(7555):221-225. | [42] | Peaston AE, Evsikov AV, Graber JH, De Vries WN, Holbrook AE, Solter D, Knowles BB . Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos . Dev Cell, 2004,7(4):597-606. | [43] | Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J , Yang YG.d inheritance of parental DNA methylomes in mammals . Cell, 2014. 157(4):979-991. | [44] | Li G, Yu Y, Fan Y, Li C, Xu X, Duan J, Li R, Kang X, Ma X, Chen X, Ke Y, Yan J, Lian Y, Liu P, Zhao Y, Zhao H, Chen Y, Sun X, Liu J, Qiao J, Liu J . Genome wide abnormal DNA methylome of human blastocyst in assisted reproductive technology . J Genet Genomics, 2017,44(10):475-481. | [45] | Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, Yan J, Ren X, Lin S, Li J, Jin X, Shi X, Liu P, Wang X, Wang W, Wei Y, Li X, Guo F, Wu X, Fan X, Yong J, Wen L, Xie SX, Tang F, Qiao J . The DNA methylation landscape of human early embryos . Nature, 2014,511(7511):606-610. | [46] | Furlan-Magaril M, Varnai C, Nagano T, Fraser P . 3D genome architecture from populations to single cells . Curr Opin Genet Dev, 2015,31:36-41. | [47] | Fraser J, Williamson I, Bickmore WA, Dostie J . An overview of genome organization and how we got there: from FISH to Hi-C . Microbiol Mol Biol Rev, 2015,79(3):347-372. | [48] | Dekker J, Mirny L . The 3D genome as moderator of chromosomal communication . Cell, 2016,164(6):1110-1121. | [49] | Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B . Topological domains in mammalian genomes identified by analysis of chromatin interactions . Nature, 2012,485(7398):376-380. | [50] | Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz- Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov VV, Ecker JR, Thomson JA, Ren B . Chromatin architecture reorganization during stem cell differentiation . Nature, 2015,518(7539):331-336. | [51] | Krijger PH, Di Stefano B, De Wit E, Limone F, Van Oevelen C, De Laat W, Graf T . Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming . Cell Stem Cell, 2016,18(5):597-610. | [52] | Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J . Organization of the mitotic chromosome . Science, 2013,342(6161):948-953. | [53] | Dekker J, Misteli T . Long-range chromatin interactions . Cold Spring Harb Perspect Biol, 2015,7(10):a019356. | [54] | Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, Yao X, Li F, Zhu W, Gao L, Chen H, Du Z, Xie W, Xu X, Huang X , Liu J.3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell, 2017, 170(2): 367- 381. e20. | [55] | Du Z, Zheng H, Huang B, Ma R, Wu J, Zhang X, He J, Xiang Y, Wang Q, Li Y, Ma J, Zhang X, Zhang K, Wang Y, Zhang MQ, Gao J, Dixon JR, Wang X, Zeng J, Xie W . Allelic reprogramming of 3D chromatin architecture during early mammalian development . Nature, 2017,547(7662):232-235. | [56] | Flyamer IM, Gassler J, Imakaev M, Brandao HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana- Konwalski K . Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition . Nature, 2017,544(7648):110-114. | [57] | Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP . Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo . PLoS One, 2010,5(5):e10531. | [58] | Zhang Y, Xiang Y, Yin Q, Du Z, Peng X, Wang Q, Fidalgo M, Xia W, Li Y, Zhao ZA, Zhang W, Ma J, Xu F, Wang J, Li L, Xie W . Dynamic epigenomic landscapes during early lineage specification in mouse embryos . Nat Genet, 2017,50(1):96-105. | [59] | Gassler J, Brandão HB, Imakaev M, Flyamer IM, Ladstatter S, Bickmore WA, Peters JM, Mirny LA, Tachibana K . A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture . EMBO J, 2017,36(24):3600-3618. | [60] | Hug CB, Grimaldi AG, Kruse K , Vaquerizas JM. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell, 2017, 169(2): 216- 228. e19. | [61] | Goolam M, Scialdone A, Graham SJL, Macaulay IC, Jedrusik A, Hupalowska A, Voet T, Marioni JC, Zernicka- Goetz M . Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos . Cell, 2016,165(1):61-74. |
|