[1] | Wang KC, Chang HY . Epigenomics: technologies and applications . Circ Res, 2018,122(9):1191-1199. | [2] | Rivera CM, Ren B . Mapping human epigenomes . Cell, 2013,155(1):39-55. | [3] | Xu Q, Xie W . Epigenome in early mammalian developpment: inheritance, reprogramming and establishment . Trends Cell Biol, 2018,28(3):237-253. | [4] | Dean W, Lucifero D, Santos F . DNA methylation in mammalian development and disease . Birth Defects Res C Embryo Today, 2005,75(2):98-111. | [5] | Marcho C, Cui W, Mager J . Epigenetic dynamics during preimplantation development . Reproduction, 2015,150(3):R109-120. | [6] | Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR . Human DNA methylomes at base resolution show widespread epigenomic differences . Nature, 2009,462(7271):315-322. | [7] | Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR . Global epigenomic reconfiguration during mammalian brain development . Science, 2013,341(6146):1237905. | [8] | Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B . Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome . Cell, 2012,148(4):816-831. | [9] | Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE . Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state . Nat Biotechnol, 2015,33(11):1165-1172. | [10] | Brind'amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC . An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations . Nat Commun, 2015,6:6033. | [11] | Shankaranarayanan P, Mendoza-Parra MA, Walia M, Wang L, Li N, Trindade LM, Gronemeyer H . Single-tube linear DNA amplification (LinDA) for robust ChIP-seq . Nat Methods, 2011,8(7):565-567. | [12] | Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I . Immunogenetics chromatin state dynamics during blood formation . Science, 2014,345(6199):943-949. | [13] | Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ . Single-cell chromatin accessibility reveals principles of regulatory variation . Nature, 2015,523(7561):486-490. | [14] | Buenrostro JD, Wu B, Chang HY , Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol |
[1] |
王文龙, 张春霞. 哺乳动物卵子与早期胚胎中全转录组poly(A)尾研究进展[J]. 遗传, 2023, 45(4): 273-278. |
[2] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[3] |
王梓川, 张嘉祺, 李磊. 哺乳动物早期胚胎发育的体外研究[J]. 遗传, 2022, 44(4): 269-274. |
[4] |
曲卉, 柳毅, 陈雅文, 汪晖. 环境因素所致印迹基因改变与子代器官发育[J]. 遗传, 2022, 44(2): 107-116. |
[5] |
张杨景晖, 常沛瑶, 杨紫淑, 薛宇航, 李雪奇, 张旸. 表观遗传修饰影响花青苷合成研究进展[J]. 遗传, 2022, 44(12): 1117-1127. |
[6] |
赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展[J]. 遗传, 2022, 44(10): 867-880. |
[7] |
何江平, 陈捷凯. 转座元件、表观遗传调控与细胞命运决定[J]. 遗传, 2021, 43(9): 822-834. |
[8] |
王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[9] |
袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[10] |
王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
[11] |
胡广伟, 张珍珍, 高焕. 文昌鱼左右体轴建立机制的研究进展[J]. 遗传, 2021, 43(2): 134-141. |
[12] |
张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[13] |
胡颖楚, 胡豪畅, 林少沂, 陈晓敏. DNA羟甲基化调控动脉粥样硬化的研究进展[J]. 遗传, 2020, 42(7): 632-640. |
[14] |
吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4): 333-346. |
[15] |
梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
|