[1] | Gianola D, Rosa GJ . One hundred years of statistical developments in animal breeding. Annu Rev AnimBiosci, 2014,3:19-56. | [2] | Henderson C R . Best linear unbiased estimation and prediction under a selection model. Biometrics, 1975,31(2):423-447. | [3] | Vergara OD, Elzo MA, Cerón-Mu?oz MF . Genetic parameters and genetic trends for age at first calving and calving interval in an angus- blancoorejinegro-zebu multibreed cattle population in colombia. LivestSci, 2009,126(1):318-322. | [4] | Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ . Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J dairy sci, 2010,93(2):743-752. | [5] | Caetano SL, Savegnago RP, Boligon AA, Ramos SB, Chud TCS, L?bo RB, Munari DP . Estimates of genetic parameters for carcass, growth and reproductive traits in nellore cattle. LivestSci, 2013,155(1):1-7. | [6] | Lopes FB, da Silva MC, Magnabosco CU, GoncalvesNarciso MG, Sainz RD . Selection indices and multivariate analysis show similar results in the evaluation of growth and carcass traits in beef cattle. PLoS One, 2016,11(1):e0147180. | [7] | Meuwissen TH, Hayes BJ, Goddard ME . Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001,157(4):1819-1829. | [8] | Meuwissen T. Genomic selection: the future of marker assisted selection and animal breeding. In: Proceedings of Electronic forum on biotechnology in food and agriculture. MAS: a fast track to increase genetic gain in plant and animal breeding, Session II: MAS in animals. FAO, Conference 10. University of Turin via L. da Vinci 44, Grugliasco (TO), Italy. 2003, 54-59. | [9] | Goddard ME, Hayes BJ . Genomic selection. J Anim breed Genet, 2007,124(6):323-330. | [10] | VanRaden PM . Practical implications for genetic modeling in the genomics era. J Dairy Sci, 2016,99(3):2405-2412. | [11] | Tan C, Bian C, Yang D, Li N, Wu ZF, Hu XX . Application of genomic selection in farm animal breeding. Hereditas(Beijing), 2017,39(11):1033-1045. | [11] | 谈成, 边成, 杨达, 李宁, 吴珍芳, 胡晓湘, 李明洲 . 基因组选择技术在农业动物育种中的应用. 遗传, 2017,39(11):1033-1045. | [12] | Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS . Genomic selection in dairy cattle: The USDA experience. Annu Rev AnimBiosci, 2017,5:309-327. | [13] | Meuwissen T, Hayes B, Goddard M . Accelerating improvement of livestock with genomic selection. Annu Rev AnimBiosci, 2013,1:221-237. | [14] | de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP . Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 2013,193(2):327-345. | [15] | Lourenco DA, Tsuruta S, Fragomeni BO, Masuda Y, Aguilar I, Legarra A, Bertrand JK, Amen TS, Wang L, Moser DW, Misztal I . Genetic evaluation using single-step genomic best linear unbiased predictor in american angus, J AnimSci, 2015,93(6):2653-2662. | [16] | Jannink JL . Dynamics of long-term genomic selection. Genet SelEvol, 2010,42:35. | [17] | Akdemir D, Beavis W, Fritsche-Neto R, Singh AK, Isidro-Sánchez J . Multi-objective optimized genomic breeding strategies for sustainable food improvement. Heredity(Edinb), 2019,122(5):672-683. | [18] | De Beukelaer H, Badke Y, Fack V, De Meyer G . Moving beyond managing realized genomic relationship in long-term genomic selection. Genetics, 2017,206(2):1127-1138. | [19] | Wray NR, Goddard ME . Increasing long-term response to selection. Genet SelEvol, 1994,26(5):431-451. | [20] | Meuwissen TH . Maximizing the response of selection with a predetermined rate of inbreeding. J AnimSci, 1997,75(4):934-940. | [21] | Grundy B, Villanueva B, Woolliams JA . Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development. Genet Res, 1998,72(2):159-168. | [22] | Grundy B, Villanueva B, Woolliams JA . Dynamic selection for maximizing response with constrained inbreeding in schemes with overlapping generations. AnimSci, 2000,70(3), 373-382. | [23] | Woolliams JA, Thompson R. A theory of genetic contributions. In: Proceedings of 5th World Congress of Genetics Applied to Livestock Production, University of Guelph, Guelph, Ontario, Canada. 1994,25:127-134. | [24] | Avenda?o S, Woolliams JA, Villanueva B . Mendelian sampling terms as a selective advantage in optimum breeding schemes with restrictions on the rate of inbreeding. Genet Res, 2004,83(1), 55-64. | [25] | Daetwyler HD, Villanueva B, Bijma P, Woolliams JA . Inbreeding in genome‐wide selection. J Anim Breed Genet, 2007,124(6):369-376. | [26] | Henryon M, Berg P, S?rensen AC . Animal-breeding schemes using genomic information need breeding plans designed to maximise long-term genetic gains. LivestSci, 2014,166:38-47. | [27] | Sonesson AK, Woolliams JA, Meuwissen THE . Genomic selection requires genomic control of inbreeding. Genet SelEvol, 2012,44:27. | [28] | Akdemir D, Sánchez JI . Efficient breeding by genomic mating. Front Genet, 2016,7:210. | [29] | Pryce JE, Hayes BJ, Goddard ME . Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information. J Dairy Sci, 2012,95(1):377-388. | [30] | Jansen GB, Wilton JW . Selecting mating pairs with linear programming techniques. J Dairy Sci, 1985,68(5):1302-1305. | [31] | Schierenbeck S, Pimentel ECG, Tietze M, K?rte J, Reents R, Reinhardt F, Simianer H, K?nig S . Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships. J Dairy Sci, 2011,94(12):6143-6152. | [32] | Hill WG, Weir BS . Variation in actual relationship as a consequence of mendelian sampling and linkage. Genet Res, 2011,93(1):47-64. | [33] | Clark SA, Kinghorn BP, Hickey JM, van der Werf JH . The effect of genomic information on optimal contribution selection in livestock breeding programs. Genet SelEvol, 2013,45:44. doi: 10.1186/1297-9686-45-44. | [34] | Weigel KA, Lin SW . Use of computerized mate selection programs to control inbreeding of holstein and jersey cattle in the next generation. J Dairy Sci, 2000,83(4):822-828. | [35] | Meuwissen THE. GENCONT: An operational tool for controlling inbreeding in selection and conservation schemes. In: Proceedings of 7th World Congress on Genetics Applied to Livestock Production. Montpellier, France. 2002, CD-ROM communication no 28-20. | [36] | Woolliams JA, Berg P, Dagnachew BS, Meuwissen TH . Genetic contributions and their optimization. J Anim Breed Genet, 2015,132(2):89-99. | [37] | Pong-Wong R, Woolliams JA . Optimisation of contribution of candidate parents to maximise genetic gain and restricting inbreeding using semidefinite programming. Genet SelEvol, 2007,39(1):3-25. | [38] | Ahlinder J, Mullin TJ, Yamashita M . Using semidefinite programming to optimize unequal deployment of genotypes to a clonal seed orchard. Tree Genet Genomes, 2014,10(1):27-34. | [39] | Carvalheiro R, Queiroz SAD, Kinghorn B . Optimum contribution selection using differential evolution. R Bras Zootec, 2010,39(7):1429-1436. | [40] | Storn R, Price K . Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim, 1997,11(4):341-359. | [41] | Kinghorn BP . An algorithm for efficient constrained mate selection. Genet SelEvol, 2011,43(1):4. | [42] | Mullin TJ, Belotti P . Using branch-and-bound algorithms to optimize selection of a fixed-size breeding population under a relatedness constraint. Tree Genet Genomes, 2016,12(1):4. | [43] | Goddard M . Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 2009,136(2):245-257. | [44] | Sun C, VanRaden PM, O’Connell JR, Weigel KA, Gianola D . Mating programs including genomic relationships and dominance effects. J Dairy Sci, 2013,96(12):8014-8023. | [45] | Liu H, Henryon M, S?rensen AC . Mating strategies with genomic information reduce rates of inbreeding in animal breeding schemes without compromising genetic gain. Animal, 2017,11(4):547-555. | [46] | Liu AYH, Woolliams JA . Continuous approximations for optimizing allele trajectories. Genet Res(Camb), 2010,92:157-166. | [47] | Li B, Leal SM . Methods for detecting associations with rarevariants for common diseases: application to analysis of sequence data. Am J Hum Genet, 2008,83(3):311-321. | [48] | Sargolzaei M, Schenkel FS . QMSim: a large-scale genome simulator for livestock. Bioinformatics, 2009,25(5):680-681. | [49] | Brito FV, Neto JB, Sargolzaei M, Cobuci JA, Schenkel FS . Accuracy of genomic selection in simulated populations mimicking the extent of linkage disequilibrium in beef cattle. BMC Genet, 2011,12(1):80. | [50] | Wellmann R . Optimum contribution selection for animal breeding and conservation: the R package optiSel. BMC Bioinformatics, 2019,20(1):25. |
|